

AS
Computer Science
Paper 1 (7516/1 – applicable for all programming languages A, B, C, D and E)
Mark Scheme

7516
June 2016

Version 1.1: Final

ComputerScience4U.com

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the
relevant questions, by a panel of subject teachers. This mark scheme includes any amendments
made at the standardisation events which all associates participate in and is the scheme which was
used by them in this examination. The standardisation process ensures that the mark scheme covers
the students’ responses to questions and that every associate understands and applies it in the same
correct way. As preparation for standardisation each associate analyses a number of students’
scripts. Alternative answers not already covered by the mark scheme are discussed and legislated
for. If, after the standardisation process, associates encounter unusual answers which have not been
raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and
expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark
schemes on the basis of one year’s document should be avoided; whilst the guiding principles of
assessment remain constant, details will change, depending on the content of a particular
examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2016 AQA and its licensors. All rights reserved.
AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this
booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any
material that is acknowledged to a third party even for internal use within the centre.

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 3 of 37

AS Computer Science

Paper 1 (7516/1 – applicable to all programming languages A, B C, D and E)

June 2016

The following annotation is used in the mark scheme:

; - means a single mark
// - means alternative response
/ - means an alternative word or sub-phrase
A - means acceptable creditworthy answer
R - means reject answer as not creditworthy
NE - means not enough
I - means ignore
DPT - means "Don't penalise twice". In some questions a specific error made by a candidate, if

repeated, could result in the loss of more than one mark. The DPT label indicates that
this mistake should only result in a candidate losing one mark, on the first occasion that
the error is made. Provided that the answer remains understandable, subsequent marks
should be awarded as if the error was not being repeated.

Pages 2 to 19 contain the generic mark scheme.

Pages 20 to 37 contain the ‘Program Source Codes’ specific to the programming languages for
questions 5.1, 9.1, 10.1, 10.2 and 11.1;

 pages 20 to 22 – VB.NET
 pages 23 to 25 – PASCAL/Delphi
 pages 26 to 29 – C#
 pages 30 to 32 – JAVA
 pages 33 to 35 – PYTHON 2
 pages 36 to 37 – PYTHON 3

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 4 of 37

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The
descriptor for the level shows the average performance for the level. There are marks in each
level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it
(as instructed) to show the qualities that are being looked for. You can then apply the mark
scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer
meets the descriptor for that level. The descriptor for the level indicates the different qualities that
might be seen in the student’s answer for that level. If it meets the lowest level then go to the next
one and decide if it meets this level, and so on, until you have a match between the level descriptor
and the answer. With practice and familiarity you will find that for better answers you will be able to
quickly skip through the lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick
holes in small and specific parts of the answer where the student has not performed quite as well
as the rest. If the answer covers different aspects of different levels of the mark scheme you
should use a best fit approach for defining the level and then use the variability of the response to
help decide the mark within the level, ie if the response is predominantly level 3 with a small
amount of level 4 material it would be placed in level 3 but be awarded a mark near the top of the
level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to
allocate marks can help with this. The exemplar materials used during standardisation will help.
There will be an answer in the standardising materials which will correspond with each level of the
mark scheme. This answer will have been awarded a mark by the Lead Examiner. You can
compare the student’s answer with the example to determine if it is the same standard, better or
worse than the example. You can then use this to allocate a mark for the answer based on the
Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify
points and assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 5 of 37

Examiners are required to assign each of the candidates’ responses to the most appropriate level
according to its overall quality, then allocate a single mark within the level. When deciding upon
a mark in a level examiners should bear in mind the relative weightings of the assessment
objectives

eg

In question 10.1, the marks available for the AO3 elements are as follows:

AO3 (design) – 2 marks
AO3 (programming) – 6 marks

In question 11.1 the marks available for the AO3 elements are as follows:

AO3 (design) – 2 marks
AO3 (knowledge) – 10 marks.

Where a candidate’s answer only reflects one element of the AO, the maximum mark they can
receive will be restricted accordingly.

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 6 of 37

01 1 Mark is for AO2 (apply)

B;

1

01 2 Mark is for AO2 (apply)

C;

1

02 1 All marks AO2 (apply)

Input string Accepted by FSM?

111011x NO

1110x YES

111001x NO

Mark as follows:
1 mark: one row correct
2 marks: all rows correct

2

02 2 All marks AO2 (apply)

Strings that start with zero or more 1s; A. starts with any number of 1s as BOD

which may or may not be followed by a 0; A. there can be at most one 0 in the string

and end with an x; A. 'end' being by implication

NOTE: 'ending with either x or 0x' is worth two marks

NOTE: MAX 2 if answer is not fully correct

3

03 All marks AO3 (evaluate)

Value for x Type of test data

25 Valid / normal / typical
A. expected / acceptable

1 Boundary / extreme

-8 Invalid / erroneous

Mark as follows:
1 mark: one row completed correctly in the table
2 marks: three rows completed correctly in the table

2

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 7 of 37

04 1 All marks AO2 (apply)

ItemsCount NewItemsCount LoopA Done LoopB NewItems

[0] [1] [2] [3]

4 1 12 0 0 0
 2 1 False 0 25
 2 False 0
 True 1
 3 False 0
 3 1 53

1. LoopA running over the values 1, 2, 3 and stops at 3;
2. LoopB is set to 0 then changes to 1 then changes to 0 then changes to 1 and
 no further changes;
3. NewItems becoming 12, 25, 0, 0 at the end of LoopA value 1;
4. NewItems not changing during LoopA value 2;
 R. if NewItems has not changed previously
5. NewItems having value 12, 25, 53, 0 at end of table;

A. NewItems without trailing zeroes
A. NewItems without repeated values for 12 and 25

Note: 12 might not be seen in NewItems[0] as does not need to be copied
across into EAD in which case column should be blank

I. columns NewItemsCount and Done (first and third columns in EAD)

5

04 2 Mark is for AO2 (apply)

NewItems contains an array/list of the unique items from the Items array/list;
Remove duplicate items from an array/list;

Max 1

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 8 of 37

05 1 All marks AO3 (programming)

1. Correct variable declarations for Value, Operation and Count;

Note for examiners
If a language allows variables to be used without explicit declaration (eg Python)
then this mark should be awarded if the three correct variables exist in the
program code and the first value they are assigned is of the correct data type.

2. Correct prompt "Enter integer (0-99): ";
3. Value assigned value entered by user;
4. WHILE loop, with syntax allowed by the programming language and correct

condition for the termination of the loop;
5. Correct syntax for the IF statement including condition and ELSE part;

A. use of ELSE IF but condition must be correct
6. Correct syntax for (Value DIV 10) + (Value MOD 10) and/or (Value

DIV 10) * (Value MOD 10);
7. Count is given initial value 0 before iteration structure and incremented by 1

inside iteration structure;
8. Correct prompt "The persistence is: " and immediately followed by

value of Count and after iteration structure;

Max 7 If code would not function correctly
Max 7 If brackets are missing for the multiplicative calculation at mark point 6.

I. Case of variable names, strings and output messages
I. Spacing in prompts
A. Minor typos in variable names and output messages
A. Initialisation of variables at declaration stage

8

05 2 Mark is for AO3 (evaluate)
Info for examiners: must match code from 05.1, including prompts on screen
capture matching those in code. Code for 05.1 must be sensible.

First Test

Enter integer (0-99):
47
Calculate additive or multiplicative persistence (a or m)?
m
The persistence is:
3

Second Test

Enter integer (0-99):
77
Calculate additive or multiplicative persistence (a or m)?
a
The persistence is:
2

Mark as follows:
Both tests showing provided test data being entered, correct choice being made
(m/a) and correct persistence value being displayed ;

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 9 of 37

05 3 Mark is for AO2 (analysis)

The number of times the iteration/while loop will be performed is unknown (at the
start of the loop) / not predetermined / indefinite;

N.E. loop until a condition is met

1

06 1 Mark is for AO1 (understanding)

Orientation;

R. if any additional code
R. if spelt incorrectly
I. case

1

06 2 Mark is for AO1 (understanding)

CheckWin // PrintBoard;

C#, VB, Java, Pascal:
SetUpBoard // SetUpShips;

R. if any additional code (including routine interface)
R. if spelt incorrectly
I. case

1

06 3 Mark is for AO1 (understanding)

ValidateBoatPosition // CheckWin;

R. if any additional code (including routine interface)
R. if spelt incorrectly
I. case

1

07 1 Mark is for AO1 (understanding)

Improves readability of code;
Easier to update the programming code if the value changes (A. by implication);
Reduce the likelihood of inconsistency causing errors;
Unlike a variable the value can't be changed / is not mutable;

Max 1

1

07 2 All marks AO2 (analyse)

1 mark: FOR loop is used to run across the length of the new ship // Number of
iterations/length of ship is known;
1 mark: program checks if the board already has a ship positioned in this cell //
this cell is not empty;
1 mark: (Use of loop structure) avoids the need for many IF statements;

Max 2

2

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 10 of 37

07 3 All marks AO2 (analyse)

Code is checking that the end of a ship does not go outside of the board / outside
of bounds of array / greater than 10; for a ship placed vertically;

A. Boat does not go off the bottom of the board ;;

2

07 4 1 mark for AO1 (knowledge) and 2 marks for AO2 (analyse)

AO1 1 mark: Exception handling is responding to the occurrence of fatal errors /
errors that would cause a crash / runtime errors;

AO2 1 mark: Could be used to trap any errors when converting user input into an
integer // to trap an error if a non-integer entry;

AO2 1 mark: Code could then ask user to re-enter the value // default value used
// automatically count as a miss // display an error message;

3

08 1 Mark is for AO2 (analysis)

MakePlayerMove;

R. if spelt incorrectly
I. case

1

08 2 Mark is for AO2 (analysis)

CheckWin;

R. if spelt incorrectly
I. case

1

08 3 Mark is for AO2 (apply)

GetRowColumn;

R. if spelt incorrectly
I. case

1

08 4 All marks AO1 (understanding)

Decomposition (of a problem/program) // use of top-down approach //
Structured programming makes use of subroutines / modules;

Use of block structures / compound statements;

Structured programming makes use of control structures; A. by example -
sequence / selection / iteration;

Avoidance of use of goto statements;

Max 2

2

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 11 of 37

08 5 All marks AO1 (understanding)

Because the scope of the two variables is different ;;
// Because they are (both) local variables; in different subroutines;

2

08 6 All marks AO1 (understanding)

In text files all data is stored as strings / ASCII values / Unicode values /
characters // text files use only byte values that display sensibly on a VDU //
stores only values that can be open and read in a text editor;
A. text file is human-readable

Binary files store data using different data types; A. By example
A. Binary files can only be correctly interpreted by application that created them

2

09 1 1 mark for AO3 (design) and 4 marks for AO3 (programming)

Note that AO3 (design) marks are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming
language statements is correct or not and regardless of whether the solution
works.

AO3 (design) - 1 mark:

1. Identifying that an appropriate technique is required to repeatedly input the
data;

AO3 (programming) - 4 marks:

2. Check against lower/upper bound for Row;
3. 2. combined correctly with check against other bound;
4. The message "Invalid value entered" is displayed only if invalid value
 has been entered for at least one of the correct bounds;

 I. Case of output message
 A. Minor typos in output message
 I. Spacing in output message

5. Function only returns values if row is valid and always returns a value if row is
 valid;

NOTE: 2. and 3. could be combined into checking against a range of values and
be awarded both marks

NOTE: Ignore any code validating against column

NOTE: If no attempt is made at validating Row but an attempt is made at
validating Column then mark points can be accepted for points 1,2,3 if done
appropriately for Column (stop at MAX 3)

 5

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 12 of 37

09 2 Mark is for AO3 (evaluate)

****SCREEN CAPTURE****
Must match code from 09.1, including prompts on screen capture matching those
in code. Code for 09.1 must be sensible.

Please enter column: 6
Please enter row: 10

Invalid value entered

Please enter column: 6
Please enter row: 9

Hit at (6,9)

Mark as follows
Screen capture(s) showing the requested test being performed;

NOTE: if they have coded a check to validate column the screenshot might not
show the second request for entry of column as 6 would be seen as valid

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 13 of 37

10 1 2 marks for AO3 (design) and 6 marks for AO3 (programming)

Level Description Mark

Range
4 A line of reasoning has been followed to arrive at a

logically structured working or almost fully working
programmed solution. The Ships data structure is
modified correctly for each hit. The sunk message is
displayed at the appropriate time. To award eight marks,
the code must perform exactly as required in the question.
It is evident from the program code that the code has been
designed appropriately to ensure that the task is achieved.

7-8

3 There is evidence that a line of reasoning has been
followed to produce a logically structured subroutine that
works correctly in most cases but with some omissions
(e.g. the Ships data structure is modified incorrectly or the
message that is displayed may not match the question). It
is evident from the program code that it has been designed
appropriately to ensure that the task is mainly achieved.

5-6

2 There is evidence that a line of reasoning has been
partially followed as the Ships data structure is modified
(though possibly incorrectly). The correct message might
not be displayed. There is little or no evidence that a line
of reasoning has been followed to award a mark for the
design of the solution.

3-4

1 An attempt to modify the Ships data structure. This
modification may not be in exactly the right place and the
value to change the structure by may be incorrect, but it
should be possible to see that it was intended to be linked
to a particular ship. To award two marks instead of one,
some of the code must be syntactically correct. There is
insufficient evidence to suggest that a line of reasoning has
been followed or that the solution has been designed.

1-2

8

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 14 of 37

Guidance

Evidence of AO3 (design) - 2 points:

1. designing a suitable interface for the CheckSunk subroutine with suitable
parameters and return values;

Suitable parameters could be board,ships,row,column OR ships and
the character from board[row,column];

JAVA: rowColumn could be passed rather than row and column

2. identifying suitable structures so that every ship can be checked (e.g. loop

or 5 IF statements);

Note that AO3 (design) points are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming
language statements is correct or not and regardless of whether the solution
works.

Evidence of AO3 (programming) - 6 points:

3. CheckSunk subroutine created with begin and end of subroutine;

4. Use the letter stored in the square that has been hit;
ie use of board[row][column] and set to a variable or used with a
comparison to a ship name first character

5. Compare the letter from the square (4.) with the first letter of the type of
ship ;
ie either via direct characters such as 'A','P' or using something similar to
ships[][][0]
R. if would only work for 2 or fewer ships

6. Take one away from the size of the ship identified as being hit;
R. if would only work for 2 or fewer ships

7. Selection statements to compare size of the hit ship against 0;
R. if would only work for 2 or fewer ships

8. Correct message (type of ship followed by 'is sunk!') is displayed
under the correct circumstances for all ships;

 NOTE: For the 'sunk' message look to make sure it is only being outputted
 at the time of sinking

 I. Case of output message
 A. Minor typos in output message
 I. Spacing in output message

Note that AO3 (programming) points are for programming and so should only be
awarded for syntactically correct code.

NOTE: Code could be written as a function or procedure - either would be
acceptable.

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 15 of 37

10 2 Mark is for AO3 (programming)

1 mark: Call to CheckSunk is in the correct position in the MakePlayerMove
subroutine (must be before setting the board cell to 'h');

A. if they have declared a variable to temporarily store the current board[row
][column] ship character and passed this before or after setting board cell to 'h'

1

10 3 Mark is for AO3 (evaluate)

****SCREEN CAPTURE****
Must match code from 10.1 and 10.2, including prompts on screen capture
matching those in code. Code for 10.1 and 10.2 must be sensible.

Please enter column: 1
Please enter row: 5

Hit at (1,5)

Patrol Boat is sunk!

The board looks like this:

 0 1 2 3 4 5 6 7 8 9
0 | | | | | | | | |
1 | | | | | | | | |
2 | | | | | | | | |
3 | m | | | | | | | |
4 | h | | | | | | | |
5 | h | | | | | | | |
6 | | | | | | | | |
7 | | | | | | | | |
8 | | | | | | | | |
9 | | | | | | | | |

Mark as follows
Screen capture(s) showing the final shot being performed (1, 5), final board layout
and the message 'Patrol Boat is sunk!';

I. Message concerning firing a torpedo (candidate may have attempted
question 11 before 10)

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 16 of 37

11 1 2 marks for AO3 (design) and 10 marks for AO3 (programming)

Note that AO3 (design) marks are for selecting appropriate techniques to use to
solve the problem, so should be credited whether the syntax of programming
language statements is correct or not and regardless of whether the solution
works.

Level Description Mark
Range

4 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution that is efficient. Code is written to
ensure only one torpedo can be fired during a game and
offers the user a chance to fire a torpedo if appropriate.
When a torpedo is fired it moves correctly. Appropriate
messages are displayed. A formal interface is used to
pass at least some of the required data into and out of the
MakePlayerTorpedoMove subroutine. All of the
appropriate design decisions have been taken.

10-12

3 There is evidence that a line of reasoning has been
followed. The PlayGame subroutine has been altered to
allow the user to fire a torpedo.
The MakePlayerTorpedoMove subroutine uses a
logically structured subroutine that works correctly in most
cases. A formal subroutine interface may or may not have
been used. The solution demonstrates good design work
as most of the correct design decisions have been taken.

7-9

2 The PlayGame subroutine has been adapted but it might
not ensure that the player can only fire one torpedo.
A MakePlayerTorpedoMove subroutine structure has
been created and there may be some appropriate,
syntactically correct programming language statements
written. There is evidence that a line of reasoning has
been partially followed for PlayGame and/or
MakePlayerTorpedoMove as although there may not be
all of the required functionality, it can be seen that the
response contains some of the statements that would be
needed in a working solution. There is evidence of some
appropriate design work as the response recognises at
least one appropriate technique that could be used by a
working solution, regardless of whether this has been
implemented correctly.

4-6

1 An attempt has been made to alter the PlayGame
subroutine and/or a subroutine has been created and some
appropriate programming language statements have been
written but there is no evidence that a line of reasoning has
been followed to arrive at a working solution. The
statements written may or may not be syntactically correct
and the subroutine will have very little or none of the
required functionality. It is unlikely that any of the key
design elements of the task have been recognised.

1-3

12

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 17 of 37

AO3 (design) - 2 marks:

1. Identification of the need for a variable to hold whether a torpedo has been
fired or not;

2. Use of an iteration structure to control the moving of the torpedo;

AO3 (programming) - 10 marks:

 PlayGame
3. Logic to determine whether a torpedo can be fired is correct and is in an

appropriate place in the PlayGame subroutine;

4. Correct prompt 'Fire a torpedo? (Y/N)' is displayed;

I. Case of output message
A. Minor typos in output message
I. Spacing in output message

5. Selection statement coded to handle a torpedo shot or a normal shot
calling the relevant subroutine and code is in appropriate place in the
PlayGame subroutine;

6. Variable is correctly updated to reflect the fact that a torpedo has been
fired;

MakePlayerTorpedoMove

7. A suitable interface for the MakePlayerTorpedoMove subroutine with
suitable parameters (board and possibly ships) and return value

8. Code correctly exits iteration when torpedo moves off board and torpedo
hits a ship

9. Code will move torpedo up board

10. Code correctly determines when torpedo has hit a ship updating board to
'h' (when necessary)

11. If current board position is empty cell '-' is updated to contain an 'm' and
code behaves correctly for cell already containing an 'm'.

12. Messages produced appropriately and displayed under correct conditions
when the torpedo misses (moves off the board) and hits a ship.

NOTE: MakePlayerTorpedoMove could be written as a procedure or function -
either would be acceptable

NOTE: A call to CheckSunk is not necessary for full marks

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 18 of 37

11 2 All marks for AO3 (evaluate)

****SCREEN CAPTURE****
Must match code from 11.1, including prompts on screen capture matching those
in code. Code for 11.1 must be sensible.

MAIN MENU

1. Start new game
2. Load training game
9. Quit

Please enter your choice: 2

The board looks like this:

 0 1 2 3 4 5 6 7 8 9
0 | | | | | | | | |
1 | | | | | | | | |
2 | | | | | | | | |
3 | | | | | | | | |
4 | | | | | | | | |
5 | | | | | | | | |
6 | | | | | | | | |
7 | | | | | | | | |
8 | | | | | | | | |
9 | | | | | | | | |

Fire a torpedo(Y/N)? Y

Please enter column: 1
Please enter row: 7

Torpedo hits at (1,5)

The board looks like this:

 0 1 2 3 4 5 6 7 8 9
0 | | | | | | | | |
1 | | | | | | | | |
2 | | | | | | | | |
3 | | | | | | | | |
4 | | | | | | | | |
5 | h | | | | | | | |
6 | m | | | | | | | |
7 | m | | | | | | | |
8 | | | | | | | | |
9 | | | | | | | | |

2

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 19 of 37

Please enter column: 2
Please enter row: 1

Sorry, (2,1) is a miss.

The board looks like this:

 0 1 2 3 4 5 6 7 8 9
0 | | | | | | | | |
1 | | m | | | | | | |
2 | | | | | | | | |
3 | | | | | | | | |
4 | | | | | | | | |
5 | h | | | | | | | |
6 | m | | | | | | | |
7 | m | | | | | | | |
8 | | | | | | | | |
9 | | | | | | | | |

Mark as follows
1 mark: Screenshots show player is asked if they want to place a torpedo and
then the 'Fire a torpedo?' prompt is not shown for the second shot;

1 mark: Screenshots show the torpedo moves correctly from (1,7) to (1,5) and
causes a hit;

NOTE: Do not penalise extra screenshots showing the torpedo moving up square
by square

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 20 of 37

VB.NET

05 1 Dim Value As Integer

Dim Operation As Char
Dim Count As Integer
Console.Write("Enter integer (0-99): ")
Value = Console.ReadLine()
Console.Write("Calculate additive or multiplicative persistence (a
or m)? ")
Operation = Console.ReadLine()
Count = 0
While Value > 9
 If Operation = "a" Then
 Value = (Value \ 10) + (Value Mod 10)
 Else
 Value = (Value \ 10) * (Value Mod 10)
 End If
 Count = Count + 1
End While
Console.Write("The persistence is: ")
Console.Write(Count)
Console.ReadLine()

NOTE: must be \ for integer division

8

09 1 Sub GetRowColumn(ByRef Row As Integer, ByRef Column As Integer)
 Console.WriteLine()
 Console.Write("Please enter column: ")
 Column = Console.ReadLine()
 Do
 Console.Write("Please enter row: ")
 Row = Console.ReadLine()
 If Row < 0 Or Row > 9 Then
 Console.WriteLine("Invalid value entered")
 End If
 Loop Until Row >= 0 And Row <= 9
 Console.WriteLine()
End Sub

Alternative (use of while loop instead of do):

Sub GetRowColumn(ByRef Row As Integer, ByRef Column As Integer)
 Console.WriteLine()
 Console.Write("Please enter column: ")
 Column = Console.ReadLine()
 Console.Write("Please enter row: ")
 Row = Console.ReadLine()
 While Row < 0 Or Row > 9
 Console.WriteLine("Invalid value entered")
 Console.Write("Please enter row: ")
 Row = Console.ReadLine()
 End While
 Console.WriteLine()
End Sub

5

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 21 of 37

10 1 Sub CheckSunk(ByVal Row As Integer, ByVal Column As Integer, ByVal

Board(,) As Char, ByRef Ships() As TShip)
 Dim ShipType As Char
 ShipType = Board(Row, Column)
 For i = 0 To Ships.Length - 1
 If Ships(i).Name(0) = ShipType Then
 Ships(i).Size -= 1
 If Ships(i).Size = 0 Then
 Console.WriteLine(Ships(i).Name & " is sunk!")
 End If
 End If
 Next
End Sub

Alternative (use of if / case / select for each ship type):

Sub CheckSunk(ByVal Row As Integer, ByVal Column As Integer, ByVal
Board(,) As Char, ByRef Ships() As TShip)
 Dim ShipIndex as Integer
 If Board(Row, Column) = "A" Then
 ShipIndex = 0
 End If
 If Board(Row, Column) = "B" Then
 ShipIndex = 1
 End If
 If Board(Row, Column) = "S" Then
 ShipIndex = 2
 End If
 If Board(Row, Column) = "D" Then
 ShipIndex = 3
 End If
 If Board(Row, Column) = "P" Then
 ShipIndex = 4
 End If
 Ships(ShipIndex).Size -= 1
 If Ships(ShipIndex).Size = 0 Then
 Console.WriteLine(Ships(ShipIndex).Name & " is sunk!")
 End If
End Sub

8

10 2 ...
 Else
 Console.WriteLine("Hit at (" & Column & "," & Row & ").")
 CheckSunk(Row, Column, Board, Ships)
 Board(Row, Column) = "h"
 End If
End While
...

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 22 of 37

11 1 Sub PlayGame(ByVal Board(,) As Char, ByVal Ships() As TShip)

 Dim GameWon As Boolean = False
 Dim TorpedoUsed As Boolean = False
 Dim TorpedoChosen As Char
 Do
 PrintBoard(Board)
 If Not TorpedoUsed Then
 Console.Write("Fire a torpedo? (Y/N)")
 TorpedoChosen = Console.ReadLine
 End If
 If TorpedoChosen = "Y" Then
 MakePlayerTorpedoMove(Board, Ships)
 TorpedoChosen = "N"
 TorpedoUsed = True
 Else
 MakePlayerMove(Board, Ships)
 End If
 GameWon = CheckWin(Board)
 If GameWon Then
 Console.WriteLine("All ships sunk!")
 Console.WriteLine()
 End If
 Loop Until GameWon
 End Sub

 Sub MakePlayerTorpedoMove(ByRef Board(,) As Char, ByVal Ships()
As TShip)
 Dim Row As Integer
 Dim Column As Integer
 GetRowColumn(Row, Column)
 While Row > 0 And (Board(Row, Column) = "m" Or Board(Row,
Column) = "-")
 Board(Row, Column) = "m"
 Row = Row - 1
 End While
 If Board(Row, Column) <> "-" And Board(Row, Column) <> "m"
Then
 Console.WriteLine("Torpedo hits at (" & Row & "," & Column &
")")
 Board(Row, Column) = "h"
 Else
 Console.WriteLine("Torpedo failed to hit a ship")
 Board(Row, Column) = "m"
 End If
 End Sub

12

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 23 of 37

PASCAL

05 1

Var
 Value : Integer;
 Operation : Char;
 Count : Integer;
Begin
 Write('Enter integer (0-99): ');
 Readln(Value);
 Write('Calculate additive or multiplicative persistence (a or
m)?');
 Readln(Operation);
 Count := 0;
 While Value > 9 Do
 Begin
 If Operation = 'a' Then
 Value := (Value DIV 10) + (Value MOD 10)
 Else
 Value := (Value DIV 10) * (Value MOD 10);
 Count := Count + 1;
 End;
 Write('The persistence is: ')
 Write(Count);
 Readln();
End.

8

09 1
Procedure GetRowColumn(Var Row : Integer; Var Column :
Integer);
Var
 Valid : Boolean;
Begin
 Valid := False;
 While Not(Valid) Do
 Begin
 Valid := True;
 Writeln;
 Write('Please enter column: ');
 Readln(Column);
 Write('Please enter row: ');
 Readln(Row);
 If (Row < 0) Or (Row > 9) Then
 Begin
 Writeln('Invalid value entered');
 Valid := False;
 End;
 End;
 Writeln;
End;

5

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 24 of 37

10 1 Procedure CheckSunk(Row : Integer; Column : Integer; Board :
TBoard;Var Ships : TShips);
Var
 ShipType : String;
 i : integer;
Begin
 ShipType := Board[Row][Column][1];
 For i := 1 To length(Ships) Do
 Begin
 If Ships[i].Name[1] = ShipType Then
 Begin
 Ships[i].Size := Ships[i].Size - 1;
 If Ships[i].Size = 0 Then
 Writeln(Ships[i].Name, ' is sunk!');
 End;
 End;
End;

Alternative (use of if / case / select for each ship type):

Procedure CheckSunk(Row : Integer; Column : Integer; Board :
TBoard;Var Ships : TShips);
Var
 ShipIndex : Integer;
Begin
 If Board[Row][Column] = 'A' Then ShipIndex := 0;
 If Board[Row][Column] = 'B' Then ShipIndex := 1;
 If Board[Row][Column] = 'S' Then ShipIndex := 2;
 If Board[Row][Column] = 'D' Then ShipIndex := 3;
 If Board[Row][Column] = 'P' Then ShipIndex := 4;
 Ships[ShipIndex].Size := Ships[ShipIndex].Size - 1;
 If Ships[ShipIndex].Size = 0 Then
 Writeln(Ships[ShipIndex].Name, ' is sunk!');
End;

8

10 2 …
 Writeln('Hit at (', Column, ',', Row, ').');
 CheckSunk(Row, Column, Board, Ships);
 Board[Row][Column] := 'h';
…

1

11 1 Procedure PlayGame(Board : TBoard; Ships : TShips);
Var
 GameWon : Boolean;
 TorpedoUsed : Boolean;
 TorpedoChosen : String;
Begin
 GameWon := False;
 TorpedoUsed := False;

12

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 25 of 37

 While Not(GameWon) Do
 Begin
 PrintBoard(Board);
 If Not(TorpedoUsed) Then
 Begin
 Writeln('Fire a torpedo? (Y/N)');
 Readln(TorpedoChosen);
 End;
 If TorpedoChosen = 'Y' Then
 Begin
 MakePlayerTorpedoMove(Board, Ships);
 TorpedoChosen := 'N';
 TorpedoUsed := True;
 End
 Else
 MakePlayerMove(Board, Ships);
 GameWon := CheckWin(Board);
 If GameWon = True Then
 Begin
 Writeln('All ships sunk!');
 Writeln;
 End;
 End;
End;

Procedure MakePlayerTorpedoMove(Var Board : TBoard; Var
Ships : TShips);
Var
 Row : Integer;
 Column : Integer;
Begin
 GetRowColumn(Row, Column);
 While (Row > 0) And ((Board[Row][Column] = 'm') Or
(Board[Row][Column] = '-')) Do
 Begin
 Board[Row][Column] := 'm';
 Row := Row - 1;
 End;
 If (Board[Row][Column] <> '-') And (Board[Row][Column] <>
'm') Then
 Begin
 Writeln('Torpedo hits at (', Column, ',', Row, ').');
 Board[Row][Column] := 'h';
 End
 Else
 Begin
 Writeln('Torpedo failed to hit a ship.');
 Board[Row][Column] := 'm';
 End;
End;

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 26 of 37

C#

05 1 int Value, Count;

string Operation;
Console.WriteLine("Enter integer (0-99):");
Value = Convert.ToInt32(Console.ReadLine());
Console.WriteLine("Calculate the additive or multiplicative
perisistence (a or m)?");
Operation = Console.ReadLine();
Count = 0;
while (Value > 9)
{
 if (Operation == "a")
 {
 Value = (Value / 10) + (Value % 10);
 }
 else
 {
 Value = (Value / 10) * (Value % 10);
 }
 Count = Count + 1;
}
Console.Write("The persistence is: ");
Console.WriteLine(Count);

8

09 1 Console.WriteLine();
Console.Write("Please enter column: ");
Column = Convert.ToInt32(Console.ReadLine());
do
{
 Console.Write("Please enter row: ");
 Row = Convert.ToInt32(Console.ReadLine());
 if (Row < 0 || Row > 9)
 {
 Console.WriteLine("Invalid value entered");
 }
} while (Row < 0 || Row > 9);
Console.WriteLine();

 5

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 27 of 37

10 1 private static void CheckSunk(int Row, int Column, char[,]
Board, ref ShipType[] Ships)
{
 for (int i = 0; i < 5; i++)
 {
 if (Ships[i].Name[0] == Board[Row, Column])
 {
 Ships[i].Size = Ships[i].Size - 1;
 if (Ships[i].Size == 0)
 {
 Console.WriteLine(Ships[i].Name + " is
sunk!");
 }

 }

 }
}

Alternative (use of if / case / select for each ship type):

private static void CheckSunk(int Row, int Column, char[,]
Board, ref ShipType[] Ships)
{
 int ShipIndex;
 if (Board[Row,Column] == 'A')
 {
 ShipIndex=0;
 }
 else if (Board[Row, Column] == 'B')
 {
 ShipIndex=1;
 }
 else if (Board[Row, Column] == 'S')
 {
 ShipIndex=2;
 }
 else if (Board[Row, Column] == 'D')
 {
 ShipIndex=3;
 }
 else if (Board[Row, Column] == 'P')
 {
 ShipIndex=4;
 }
 Ships[ShipIndex].Size -= 1;
 if (Ships[ShipIndex].Size == 0)
 {
 Console.WriteLine(Ships[ShipIndex].Name + " is sunk!");
 }
}

8

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 28 of 37

10 2 ...
else
{
 Console.WriteLine("Hit at (" + Column + "," + Row +
").");
 CheckSunk(Row, Column, Board, ref Ships);
 Board[Row, Column] = 'h';
...

1

11 1 private static void PlayGame(ref char[,] Board, ref
ShipType[] Ships)
 {
 bool GameWon = false;
 bool TorpedoUsed = false;
 string TorpedoChosen;
 while (GameWon == false)
 {
 PrintBoard(Board);
 if (TorpedoUsed == false)
 {
 Console.WriteLine("Fire a torpedo? (Y/N)");
 TorpedoChosen = Console.ReadLine();
 }
 if (TorpedoChosen == "Y")
 {
 MakePlayerTorpedoMove(ref Board, ref Ships);
 TorpedoChosen = "N";
 TorpedoUsed = true;
 }
 else
 {
 MakePlayerMove(ref Board, ref Ships);
 }
 GameWon = CheckWin(Board);
 if (GameWon == true)
 {
 Console.WriteLine("All ships sunk!");
 Console.WriteLine();
 }
 }
 }

 private static void MakePlayerTorpedoMove(ref char[,]
Board, ref ShipType[] Ships)
 {
 int Row = 0;
 int Column = 0;
 GetRowColumn(ref Row, ref Column);
 while (Row > 0 && (Board[Row, Column] == 'm' ||
Board[Row, Column] == '-'))
 {
 Board[Row, Column] = 'm';
 Row = Row - 1;

12

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 29 of 37

 }
 if (Board[Row, Column] <> '-' && Board[Row, Column] <>
'm')
 {
 Console.WriteLine("Torpedo hits at (" + Column + "," +
Row + ").");
 Board[Row, Column] = 'h';
 }
 else
 {
 Console.WriteLine("Torpedo failed to hit a ship.");
 Board[Row, Column] = 'm';
 }
}

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 30 of 37

JAVA

05 1 AQAConsole2016 console = new AQAConsole2016();

console.println("Enter integer (0-99): ");
int value = console.readInteger("");
console.println("Calculate additive or multiplicative
persistence (a or m)? ");
char operation = console.readChar("");

int count = 0;

while (value > 9){
 if(operation == 'a'){
 value = (value/10) + (value%10);
 }
 else{
 value = (value/10) * (value%10);
 }
 count += 1;
}

console.println("The persistence is: " + count);

A. Putting prompts inside readInteger and readChar rather than separate
println statement
A. Putting count = count + 1 instead of count += 1.

A. Answers that don't make use of the AQA classes

NOTE: if a string is used for operation then the comparison would be
operation.equals("a")

8

09 1 int[] getRowColumn(){
 int column;
 int row;
 int[] move;
 move = new int[2];
 column = console.readInteger("Please enter column: ");
 boolean valid = false;
 while(!valid){
 row = console.readInteger("Please enter row: ");
 if (row < 0 || row > 9){
 console.println("Invalid input entered");
 }
 else{
 valid = true;
 }
 }
 console.println();
 move[0] = row;
 move[1] = column;
 return move;
}

5

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 31 of 37

10 1 void checkSunk(int row, int column, char[][] board, Ship[]

ships){
 char shipType = board[row][column];
 for(int i = 0; i < ships.size; i++){
 if(ships[i].name.charAt(0) == shipType){
 ships[i].size -= 1;
 if(ships[i].size == 0){
 console.println(ships[i].name + " is sunk!");
 }
 }
 }
}

Alternative (use of if / case / select for each ship type):

void checkSunk(int row, int column, char[][] board, Ship[]
ships){
 int shipIndex;
 if(board[row][column] == 'A'){
 shipIndex = 0;
 }
 if(board[row][column] == 'B'){
 shipIndex = 1;
 }
 if(board[row][column] == 'S'){
 shipIndex = 2;
 }
 if(board[row][column] == 'D'){
 shipIndex = 3;
 }
 if(board[row][column] == 'P'){
 shipIndex = 4;
 }
 ships[shipIndex].length -= 1;
 if(ships[shipIndex].length == 0){
 console.println(ships[shipIndex].name + " is sunk!");
 }
}

8

10 2 ...
else{
 console.println("Hit at (" + column + "," + row + ").");
 checkSunk(row, column, board, ships);
 board[row][column] = 'h';
...

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 32 of 37

11 1 void playGame(char[][] board, Ship[] ships){
 boolean gameWon = false;
 boolean torpedoUsed = false;
 char torpedoChosen;
 while(!gameWon){
 printBoard(board);
 if (!torpedoUsed){
 console.println("Fire a torpedo? (Y/N)");
 torpedoChosen = console.readChar("");
 }
 if (torpedoChosen == 'Y'){
 MakePlayerTorpedoMove(board, ships);
 torpedoChosen = 'N';
 torpedoUsed = true;
 }
 else{
 makePlayerMove(board, ships);
 }
 gameWon = checkWin(board, ships);
 if(gameWon){
 console.println("All ships sunk!");
 console.println();
 }
 }
 }

 void makePlayerTorpedoMove(char[][] board, Ship[] ships){
 int[] rowColumn = getRowColumn();
 int row = rowColumn[0];
 int column = rowColumn[1];
 while (row > 0 && (board[row][column] == 'm' ||
board[row][column] == '-'){
 board[row][column] = 'm';
 row = row - 1;
 }
 if (board[row][column] != '-' && board[row][column] != 'm'){
 console.println("Torpedo hits at (" + column + "," + row +
").");
 board[row][column] = 'h';
 }
 else{
 console.println("Torpedo failed to hit a ship.");
 board[row][column] = 'm';
 }
}

12

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 33 of 37

PYTHON 2

05 1 print "Enter integer (0-99): "

Value = int(raw_input())
print "Calculate additive or multiplicative persistence (a
or m)? "
Operation = raw_input()
Count = 0
while Value > 9:
 if Operation == "a":
 Value = (Value / 10) + (Value % 10)
 else:
 Value = (Value / 10) * (Value % 10)
 Count = Count + 1
print "The persistence is: "
print Count

A. Value = input() rather than Value = int(raw_input())
A. Putting prompts inside raw_input rather than separate print statement

8

09 1 def GetRowColumn():
 Valid = False
 while not Valid:
 Valid = True
 print
 Column = int(raw_input("Please enter column: "))
 Row = int(raw_input("Please enter row: "))
 print
 if Row < 0 or Row > 9:
 print "Invalid value entered"
 Valid = False
 return Row, Column

Alternative:
def GetRowColumn():
 print
 Column = int(raw_input("Please enter column: "))
 Valid = False
 while not Valid:
 Valid = True
 Row = int(raw_input("Please enter row: "))
 print
 if Row < 0 or Row > 9:
 print "Invalid value entered"
 Valid = False
 return Row, Column

5

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 34 of 37

10 1 def CheckSunk(Row, Column, Board, Ships):
 ShipChar = Board[Row][Column]
 for Ship in range(len(Ships)):
 if Ships[Ship][0][0] == ShipChar:
 Ships[Ship][1] = Ships[Ship][1] - 1
 if Ships[Ship][1] == 0:
 print Ships[Ship][0] + " is sunk!"

Alternative (use of if / case / select for each ship type):

def CheckSunk(Row, Column, Board, Ships):
 if Board[Row, Column] == "A":
 ShipIndex = 0
 if Board[Row, Column] == "B":
 ShipIndex = 1
 if Board[Row, Column] == "S":
 ShipIndex = 2
 if Board[Row, Column] == "D":
 ShipIndex = 3
 if Board[Row, Column] == "P":
 ShipIndex = 4
 Ships[ShipIndex][1] = Ships[ShipIndex][1] - 1
 if Ships[ShipIndex][1] == 0:
 print Ships[ShipIndex][0] + " is sunk!"

8

10 2 ...
else:
 print "Hit at (" + str(Column) + "," + str(Row) + ")."
 CheckSunk(Row, Column, Board, Ships)
 Board[Row][Column] = "h"
...

1

11 1 def PlayGame(Board, Ships):
 GameWon = False
 TorpedoUsed = False
 while not GameWon:
 PrintBoard(Board)
 if not TorpedoUsed:
 TorpedoChosen = raw_input("Fire a torpedo? (Y/N)")
 if TorpedoChosen == "Y":
 MakePlayerTorpedoMove(Board, Ships)
 TorpedoChosen = "N"
 TorpedoUsed = True
 else:
 MakePlayerMove(Board, Ships)
 GameWon = CheckWin(Board)
 if GameWon:
 print "All ships sunk!"
 print

12

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 35 of 37

def MakePlayerTorpedoMove(Board, Ships):
 Row, Column = GetRowColumn()
 while Row > 0 and (Board[Row][Column] == "m" or
Board[Row][Column] == "-"):
 Board[Row][Column] = "m"
 Row = Row - 1
 if Board[Row][Column] != "-" and Board[Row][Column] !=
"m":
 print "Torpedo hits at (" + str(Column) + "," + str(Row)
+ ")."
 Board[Row][Column] = "h"
 else:
 print "Torpedo failed to hit a ship."

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 36 of 37

PYTHON 3

05 1 print("Enter integer (0-99): ")

Value = int(input())
print("Calculate additive or multiplicative persistence (a
or m)? ")
Operation = input()
Count = 0
while Value > 9:
 if Operation == "a":
 Value = (Value // 10) + (Value % 10)
 else:
 Value = (Value // 10) * (Value % 10)
 Count = Count + 1
print("The persistence is: ")
print (Count)

A. Putting prompts inside raw_input rather than separate print statement

NOTE: Python 3 will require // to work for integer division

8

09 1 def GetRowColumn():
 Valid = False
 while not Valid:
 Valid = True
 print()
 Column = int(input("Please enter column: "))
 Row = int(input("Please enter row: "))
 print()
 if Row < 0 or Row > 9:
 print ("Invalid value entered")
 Valid = False
 return Row, Column

5

10 1 def CheckSunk(Row, Column, Board, Ships):
 ShipType = Board[Row][Column]
 for i in range(0, len(Ships)):
 if Ships[i][0][0] == ShipType:
 Ships[i][1] -= 1
 if Ships[i][1] == 0:
 print(Ships[i][0] + " is sunk!")

Alternative (use of if / case / select for each ship type):

def CheckSunk(Row, Column, Board, Ships):
 if Board[Row, Column] == "A":
 ShipIndex = 0
 if Board[Row, Column] == "B":
 ShipIndex = 1
 if Board[Row, Column] == "S":
 ShipIndex = 2

8

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – PAPER 1 (7516/1) – JUNE 2016

 37 of 37

 if Board[Row, Column] == "D":
 ShipIndex = 3
 if Board[Row, Column] == "P":
 ShipIndex = 4
 Ships[ShipIndex][1] = Ships[ShipIndex][1] - 1
 if Ships[ShipIndex][1] == 0:
 print(Ships[ShipIndex][0] + " is sunk!")

10 2 ...

else:
 print("Hit at (" + str(Column) + "," + str(Row) + ").")
 CheckSunk(Row, Column, Board, Ships)
 Board[Row][Column] = "h"
...

1

11 1 def PlayGame(Board, Ships):
 GameWon = False
 TorpedoUsed = False
 while not GameWon:
 PrintBoard(Board)
 if not TorpedoUsed:
 TorpedoChosen = input("Fire a torpedo? (Y/N)")
 if TorpedoChosen == "Y":
 MakePlayerTorpedoMove(Board, Ships)
 TorpedoChosen = "N"
 TorpedoUsed = True
 else:
 MakePlayerMove(Board, Ships)
 GameWon = CheckWin(Board)
 if GameWon:
 print("All ships sunk!")
 print()

def MakePlayerTorpedoMove(Board, Ships):
 Row, Column = GetRowColumn()
 while Row > 0 and (Board[Row][Column] == "m" or
Board[Row][Column] == "-"):
 Board[Row][Column] = "m"
 Row = Row - 1
 if Board[Row][Column] != "-" and Board[Row][Column] !=
"m":
 print("Torpedo hits at (" + str(Column) + "," + str(Row)
+ ").")
 Board[Row][Column] = "h"
 else:
 print("Torpedo failed to hit a ship.")

12

ComputerScience4U.com

	AS

