

AS

COMPUTER SCIENCE

7516/1
 Paper 1

Mark scheme

 June 2019

Version: 1.0 Final

196A75161/MS

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

2

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant

questions, by a panel of subject teachers. This mark scheme includes any amendments made at the

standardisation events which all associates participate in and is the scheme which was used by them in

this examination. The standardisation process ensures that the mark scheme covers the students’

responses to questions and that every associate understands and applies it in the same correct way.

As preparation for standardisation each associate analyses a number of students’ scripts. Alternative

answers not already covered by the mark scheme are discussed and legislated for. If, after the

standardisation process, associates encounter unusual answers which have not been raised they are

required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and

expanded on the basis of students’ reactions to a particular paper. Assumptions about future mark

schemes on the basis of one year’s document should be avoided; whilst the guiding principles of

assessment remain constant, details will change, depending on the content of a particular examination

paper.

Further copies of this mark scheme are available from aqa.org.uk

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

3

The following annotation is used in the mark scheme:

; - means a single mark
// - means alternative response
/ - means an alternative word or sub-phrase
A - means acceptable creditworthy answer
R - means reject answer as not creditworthy
NE - means not enough
I - means ignore
DPT - means "Don't penalise twice". In some questions a specific error made by a candidate, if

repeated, could result in the loss of more than one mark. The DPT label indicates that this
mistake should only result in a candidate losing one mark, on the first occasion that the error is
made. Provided that the answer remains understandable, subsequent marks should be
awarded as if the error was not being repeated.

Page 5 – 18 contain the generic mark scheme.

Pages 19 to 39 contain the ‘Program Source Codes’ specific to the programming languages for
questions 03.1, 14.1, 15.1, 16.1 and 17.2

 pages 20 to 23 – VB.NET
 pages 24 to 26 – PYTHON 2
 pages 27 to 29 – PYTHON 3
 pages 30 to 34 – PASCAL/Delphi
 pages 35 to 39 – C#
 pages 40 to 43 – JAVA

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

4

Level of response marking instructions

Level of response mark schemes are broken down into levels, each of which has a descriptor. The

descriptor for the level shows the average performance for the level. There are marks in each level.

Before you apply the mark scheme to a student’s answer read through the answer and annotate it (as

instructed) to show the qualities that are being looked for. You can then apply the mark scheme.

Step 1 Determine a level

Start at the lowest level of the mark scheme and use it as a ladder to see whether the answer meets the
descriptor for that level. The descriptor for the level indicates the different qualities that might be seen in
the student’s answer for that level. If it meets the lowest level then go to the next one and decide if it
meets this level, and so on, until you have a match between the level descriptor and the answer. With
practice and familiarity you will find that for better answers you will be able to quickly skip through the
lower levels of the mark scheme.

When assigning a level you should look at the overall quality of the answer and not look to pick holes in
small and specific parts of the answer where the student has not performed quite as well as the rest. If
the answer covers different aspects of different levels of the mark scheme you should use a best fit
approach for defining the level and then use the variability of the response to help decide the mark within
the level, ie if the response is predominantly level 3 with a small amount of level 4 material it would be
placed in level 3 but be awarded a mark near the top of the level because of the level 4 content.

Step 2 Determine a mark

Once you have assigned a level you need to decide on the mark. The descriptors on how to allocate
marks can help with this. The exemplar materials used during standardisation will help. There will be an
answer in the standardising materials which will correspond with each level of the mark scheme. This
answer will have been awarded a mark by the Lead Examiner. You can compare the student’s answer
with the example to determine if it is the same standard, better or worse than the example. You can then
use this to allocate a mark for the answer based on the Lead Examiner’s mark on the example.

You may well need to read back through the answer as you apply the mark scheme to clarify points and
assure yourself that the level and the mark are appropriate.

Indicative content in the mark scheme is provided as a guide for examiners. It is not intended to be
exhaustive and you must credit other valid points. Students do not have to cover all of the points
mentioned in the Indicative content to reach the highest level of the mark scheme.

An answer which contains nothing of relevance to the question must be awarded no marks.

Examiners are required to assign each of the candidates’ responses to the most appropriate level
according to its overall quality, then allocate a single mark within the level. When deciding upon a
mark in a level examiners should bear in mind the relative weightings of the assessment objectives.

eg
In question 17.1, the marks available for the AO3 elements are as follows:

AO3 (design) – 2 marks

AO3 (programming) – 7 marks
Where a candidate’s answer only reflects one element of the AO, the maximum mark they can receive

will be restricted accordingly.

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

5

Qu Marks

01 1 All marks for AO1 (knowledge)

Difference:
global variables accessible to all parts of the program
// declared in main program block
// local variables declared in subroutine
// accessible only in the program block/subroutine in which it was declared;

Reason:
memory allocated to local variables can be reused when subroutine not in use;
local variable only exists while the program block/subroutine is executing;
using local variables makes subroutines self-contained;
A prevents accidental changes;
A easier debugging/maintenance;

Max 2

3

02 1 All marks for AO2 (apply)

x MyValue y

y > -1 ?

(True/Fal

se)

Numbers[y]

Numbers[y

]

< MyValue

?

(True/

False)

Numbers

[0] [1] [2]

 43 17 85

1 17 0 True 43 False

 (17)

2 85 1 True 17 True

 17

 0 True 43 True

 43

 -1 False

 85

1 mark for correct x column and MyValue column;

1 mark for correct y column (0, 1, 0, -1);
1 mark for correct Boolean values in columns 4 and 6;
 A. TRUE/true, FALSE/false, Yes/No, Y/N and any other suitable indicators

1 mark for final contents of Numbers correct;

4

02 2 Mark is for AO2 (analyse)

sort from largest to smallest;
NE Sort on its own
A bubble sort;

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

6

03 1 All marks for AO3 (programming)

Mark as follows:

1) Correct variable declarations for NumberIn, NumberOut, Count,

PartValue;

Note to examiners
If a language allows variables to be used without explicit declaration (eg Python)
then this mark should be awarded if the correct variables exist in the program
code and the first value they are assigned is of the correct data type.

2) Correct prompt "Enter a positive whole number: " and

NumberIn assigned value entered by user;

3) Correct initialisation of NumberOut and Count;

4) WHILE loop with syntax allowed by the programming language and correct

condition for termination of the loop;

5) Correct incrementation of Count within WHILE loop;

6) Correct assignment to PartValue within WHILE loop but before FOR loop;

7) Correct updating of NumberIn within WHILE loop but before FOR loop;

8) FOR loop with syntax allowed by the programming language over correct range;

9) Correct assignment to PartValue inside FOR loop;

10) Correct calculation of NumberOut after FOR loop but within WHILE loop;

11) Output statement giving correct output after WHILE loop;

I. Ignore minor differences in case and spelling

Max 10 if code does not function correctly

11

03 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 03.1, including prompts on screen capture matching those in
code.
Code for 03.1 must be sensible.

Screen capture showing:
'22' being entered and the message 'The result is: 10110' displayed
'29' being entered and the message 'The result is: 11101' displayed
'-1' being entered and the message 'The result is: 0' displayed

Enter a positive whole number: 22

The result is: 10110

>>>

Enter a positive whole number: 29

The result is: 11101

>>>

Enter a positive whole number: -1

The result is: 0

>>>

1

03 3 Mark is for AO2 (analyse)

converts from (positive) decimal/denary to binary;

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

7

04 1 Mark is for AO1 (understand)

Valid

/ValidPiece

/ValidMove

/Found

/EndOfList

/Jumping

/GameEnd

/FileFound;

A CanJump;

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

04 2 Mark is for AO1 (understand)

ValidMove

/ValidJump

/ListEmpty;

A. setUpBoard (for Java only)

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

05 Mark is for AO1 (understand)

MoveRecord

/ListOfMoves;

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

06 Mark is for AO1 (understand)

catch any file errors // stop program crashing if file doesn’t exist;

1

07 Mark is for AO2 (analyse)

positions of player A’s pieces;

A the contents of (the data structure/variable) A // pointer/address to A // A;

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

8

08 All marks for AO1 (understand)

Label Description

(a) no move possible (for player A)

(b) Player B moves

(c) Player B’s turn

(d) no move possible (for player B)

1 mark for 2 correct labels
2 marks for 4 correct labels

2

09 1 Mark is for AO2 (analyse)

DisplayBoard;

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

09 2 Mark is for AO2 (analyse)

PrintResult;

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

09 3 Mark is for AO2 (analyse)

PrintLine;

A. PrintRow / PrintMiddleRow;

Max 1
R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

9

10 1 All marks for AO2 (analyse)

(row 0 column 0) is used to store the number of moves;
(row 0 column 1) is used to store the number of pieces promoted to dames;

2

10 2 Mark for AO2 (analyse)

There are (a maximum of) 12 pieces per player // each row stores data for each piece;

1

10 3 All marks for AO2 (analyse)

rows 1 to 12 (in columns 0 and 1) store the coordinates/location of the pieces on the
board;
if coordinates are -1 then indicates no piece;
(column 2) indicates if the piece is a dame // indicates state of each piece;
Max 2

2

11 1 mark is for AO1 (understand)

it checks whether the sum of row and column are an even number;

2 marks for AO2(analyse)

to blank out a square if it can’t be used;
to store a space if it can be used;
A for 1 mark: creates the checker board pattern;

3

12 All marks for AO2 (analyse)

it counts the number of moves that are possible at the current state of play;

it acts as the index for the data structure ListOfMoves;

2

13 All marks for AO2 (analyse)

1) User is asked to enter a Piece ID;

2) the ListOfMoves is searched (sequentially) // linear search of ListOfMoves //

ListOfMoves is stepped through;

3) for an occurrence of the piece ID entered;

4) until either the piece ID is found or the end of ListOfMoves is encountered;

5) if end of list is encountered user is asked again to enter the Piece ID;

5

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

10

14 1 All marks for AO3 (programming)

Mark as follows:
1 mark for error codes 1 to 3 tested (using IF, nested IF or CASE)
A Error messages in a data structure and accessed via error code as index
1 mark for appropriate error messages (A similar wording but same meaning as):
'Error code 1 - Not a valid piece'

'Error code 2 - Not a valid move'

'Error code 3 - Not a number'

1 mark outputting error code (1, 2, 3 or 4)

Note:
Messages such as “Error Code 1 – not valid” are not detailed enough and are not
creditworthy.

3

14 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 14.1, including prompts on screen capture matching those in
code.
Code for 14.1 must be sensible.

Screen capture showing:
Next Player: a

a5 can jump to 3 , 2

a6 can jump to 3 , 0

a6 can jump to 3 , 4

a7 can jump to 3 , 2

a7 can jump to 3 , 6

a8 can jump to 3 , 4

a9 can move to 3 , 0

a9 can move to 3 , 2

a10 can move to 3 , 2

a10 can move to 3 , 4

a11 can move to 3 , 4

a11 can move to 3 , 6

a12 can move to 3 , 6

There are 13 possible moves

Which piece do you want to move? a4

Error code 1 – not a valid piece

Which piece do you want to move? a9

Which row do you want to move to? 3

Which column do you want to move to? 4

Error code 2 – not a valid move

Which row do you want to move to? a

Which column do you want to move to? 9

Error code 3 – not a number

Which row do you want to move to? 3

Which column do you want to move to? 0

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

11

15 1 1 mark for AO3 (design) and 1 mark for AO3 (programming)

Mark as follows:

AO3 (design) – 1 mark:

1) choosing the final if statement to amend;

AO3 (programming) – 1 mark:

2) correct logic statement;

2

15 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 15.1, including prompts on screen capture matching those
in code.
Code for 15.1 must be sensible.

Screen capture showing:
Next Player: a

a1 can move to 1 , 0

a1 can move to 1 , 2

a2 can move to 7 , 0

a3 can move to 3 , 6

a5 can move to 4 , 3

a5 can jump to 5 , 0

a6 can jump to 5 , 2

a7 can move to 3 , 4

a7 can move to 3 , 6

There are 9 possible moves

Which piece do you want to move? a5

Which row do you want to move to? 5

Which column do you want to move to? 0

jumped over b1

Player A:

[[9, 0, 0], [0, 1, 0], [6, 1, 0], [2, 7, 0], [0, 7, 0], [5,

0, 0], [3, 0, 0], [2, 5, 0], [1, 6, 0], [-1, -1, 0], [-1, -1,

0], [-1, -1, 0], [-1, -1, 0]]

Player B:

[[8, 0, 0], [4, 1, 0], [7, 2, 0], [5, 6, 0], [5, 4, 0], [1,

4, 0], [6, 3, 0], [6, 5, 0], [6, 7, 0], [-1, -1, 0], [-1, -1,

0], [-1, -1, 0], [-1, -1, 0]]

 0 1 2 3 4 5 6 7

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 0 |XXXXX| a1 |XXXXX| |XXXXX| |XXXXX| a4 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 1 | |XXXXX| |XXXXX| b5 |XXXXX| a8 |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

12

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 2 |XXXXX| |XXXXX| |XXXXX| a7 |XXXXX| a3 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 3 | a6 |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 4 |XXXXX| b1 |XXXXX| |XXXXX| |XXXXX| |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 5 | a5 |XXXXX| |XXXXX| b4 |XXXXX| b3 |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 6 |XXXXX| a2 |XXXXX| b6 |XXXXX| b7 |XXXXX| b8 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 7 | |XXXXX| b2 |XXXXX| |XXXXX| |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

13

16 1 2 marks for AO3 (design) and 7 marks for AO3 (programming)

Level Description Mark
Range

3 A line of reasoning has been followed to arrive at a
logically structured working or almost fully working
programmed solution.
All of the appropriate design decisions have been taken.

7–9

2 There is evidence that a line of reasoning has been
partially followed. There is evidence of some appropriate
design work.

4–6

1 An attempt has been made to write and amend the

subroutine PrintResult. Some appropriate

programming statements have been written. There is
little evidence to suggest that a line of reasoning has
been followed or that the solution has been designed.
The statements written may or may not be syntactically
correct and the subroutines will have very little or none
of the extra required functionality. It is unlikely that any
of the key design elements of the task have been
recognised.

1–3

Marking guidance:

Evidence of AO3 design – 2 points:

Evidence of design to look for in response:

1) subroutine CountNumberOfPieces with interface so can be used for

both A and B

2) A method for checking piece exists on board

Evidence of AO3 programming – 7 points:

Evidence of programming to look for in response:

3) in CountNumberOfPieces count variable initialised, updated and

returned correctly

A counting non-dames only

4) in CountNumberOfPieces loop through A/B/PlayersPieces

5) use value stored in A/B [0,1] as the number of dames

6) formula given in Q correctly programmed

7) comparing the two players’ scores and output winner correctly

8) output calculated scores

9) sensible output in case of a draw

Note: output is the same whether or not Question 15 has been attempted.

9

16 2 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 16.1, including prompts on screen capture matching those

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

14

in code.
Code for 16.1 must be sensible.

Screen capture showing:
Enter the filename: game4.txt

Player A:

[[15, 2, 0], [1, 2, 0], [0, 3, 0], [0, 5, 0], [1, 6, 0], [0,

1, 1], [1, 0, 1], [1, 4, 0], [2, 7, 0], [2, 1, 0], [2, 3, 0],

[2, 5, 0], [3, 6, 0]]

Player B:

[[15, 0, 0], [4, 3, 0], [5, 0, 0], [5, 6, 0], [5, 4, 0], [4,

1, 0], [3, 2, 0], [6, 5, 0], [6, 7, 0], [3, 0, 0], [3, 4, 0],

[4, 5, 0], [4, 7, 0]]

 0 1 2 3 4 5 6 7

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 0 |XXXXX| A5 |XXXXX| a2 |XXXXX| a3 |XXXXX| |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 1 | A6 |XXXXX| a1 |XXXXX| a7 |XXXXX| a4 |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 2 |XXXXX| a9 |XXXXX| a10 |XXXXX| a11 |XXXXX| a8 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 3 | b9 |XXXXX| b6 |XXXXX| b10 |XXXXX| a12 |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 4 |XXXXX| b5 |XXXXX| b1 |XXXXX| b11 |XXXXX| b12 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 5 | b2 |XXXXX| |XXXXX| b4 |XXXXX| b3 |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 6 |XXXXX| |XXXXX| |XXXXX| b7 |XXXXX| b8 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 7 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

Next Player: a

There are 0 possible moves

Game ended

A won this game with a score of -17

B got a score of 3

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

15

17 1 Mark is for AO2 (analyse)

OpponentsPieces;

R. if any additional code
R. if spelt incorrectly
I. case & spacing

1

17 2 2 marks for AO3 (design) and 7 marks for AO3 (programming)

Level Description Mark
Range

3 A line of reasoning has been followed to arrive at a logically
structured working or almost fully working programmed
solution.
All of the appropriate design decisions have been taken.

7–9

2 There is evidence that a line of reasoning has been partially
followed. There is evidence of some appropriate design
work.

4–6

1 An attempt has been made to amend the subroutine

MoveDame. Some appropriate programming statements

have been written. There is little evidence to suggest that a
line of reasoning has been followed or that the solution has
been designed. The statements written may or may not be
syntactically correct and the subroutines will have very little
or none of the extra required functionality. It is unlikely that
any of the key design elements of the task have been
recognised.

1–3

Marking guidance:

Evidence of AO3 design – 2 points:

Evidence of design to look for in response:

1) validate that chosen piece is an opponent’s existing piece

2) return updated OpponentsPieces from subroutine MoveDame

(parameter by reference)

Evidence of AO3 programming – 7 points:

Evidence of programming to look for in response:

3) user prompt for which piece to take

4) extracting player letter from chosen piece

5) extracting index from chosen piece

6) retrieving coodinates from OpponentsPieces

7) set opponent’s piece coordinates to -1

8) new dame’s coordinates set to taken piece’s coordinates

9) update parameters in calls to MovePiece in subroutine MakeMove

(parameter by reference)

A. solutions that ask the user to input the row and column of the piece to be removed.

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

16

17 3 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 17.2, including prompts on screen capture matching those in
code.
Code for 17.2 must be sensible.

Screen capture showing:
Do you want to load a saved game? (Y/N): y

Enter the filename: game3.txt

Player A:

[[8, 0, 0], [0, 1, 0], [6, 1, 0], [2, 7, 0], [0, 7, 0], [3, 2,

0], [3, 0, 0], [2, 5, 0], [1, 6, 0], [-1, -1, 0], [-1, -1, 0],

[-1, -1, 0], [-1, -1, 0]]

Player B:

[[8, 0, 0], [4, 1, 0], [7, 2, 0], [5, 6, 0], [5, 4, 0], [1, 4,

0], [6, 3, 0], [6, 5, 0], [6, 7, 0], [-1, -1, 0], [-1, -1, 0],

[-1, -1, 0], [-1, -1, 0]]

 0 1 2 3 4 5 6 7

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 0 |XXXXX| a1 |XXXXX| |XXXXX| |XXXXX| a4 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 1 | |XXXXX| |XXXXX| b5 |XXXXX| a8 |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 2 |XXXXX| |XXXXX| |XXXXX| a7 |XXXXX| a3 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 3 | a6 |XXXXX| a5 |XXXXX| |XXXXX| |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 4 |XXXXX| b1 |XXXXX| |XXXXX| |XXXXX| |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 5 | |XXXXX| |XXXXX| b4 |XXXXX| b3 |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 6 |XXXXX| a2 |XXXXX| b6 |XXXXX| b7 |XXXXX| b8 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 7 | |XXXXX| b2 |XXXXX| |XXXXX| |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

Next Player: a

a1 can move to 1 , 0

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

17

a1 can move to 1 , 2

a2 can move to 7 , 0

a3 can move to 3 , 6

a5 can move to 4 , 3

a7 can move to 3 , 4

a7 can move to 3 , 6

a8 can jump to 3 , 4

There are 8 possible moves

Which piece do you want to move? a2

Which row do you want to move to? 7

Which column do you want to move to? 0

Which piece do you want to take? b1

Player A:

[[9, 1, 0], [0, 1, 0], [4, 1, 1], [2, 7, 0], [0, 7, 0], [3, 2,

0], [3, 0, 0], [2, 5, 0], [1, 6, 0], [-1, -1, 0], [-1, -1, 0],

[-1, -1, 0], [-1, -1, 0]]

Player B:

[[8, 0, 0], [-1, -1, 0], [7, 2, 0], [5, 6, 0], [5, 4, 0], [1,

4, 0], [6, 3, 0], [6, 5, 0], [6, 7, 0], [-1, -1, 0], [-1, -1,

0], [-1, -1, 0], [-1, -1, 0]]

 0 1 2 3 4 5 6 7

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 0 |XXXXX| a1 |XXXXX| |XXXXX| |XXXXX| a4 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 1 | |XXXXX| |XXXXX| b5 |XXXXX| a8 |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 2 |XXXXX| |XXXXX| |XXXXX| a7 |XXXXX| a3 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 3 | a6 |XXXXX| a5 |XXXXX| |XXXXX| |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 4 |XXXXX| A2 |XXXXX| |XXXXX| |XXXXX| |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 5 | |XXXXX| |XXXXX| b4 |XXXXX| b3 |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 6 |XXXXX| |XXXXX| b6 |XXXXX| b7 |XXXXX| b8 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 7 | |XXXXX| b2 |XXXXX| |XXXXX| |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

18

17 4 Mark is for AO3 (evaluate)

**** SCREEN CAPTURE ****
Must match code from 17.2, including prompts on screen capture matching those in
code.
Code for 17.2 must be sensible.

Screen capture showing:
Next Player: b

b2 can move to 6 , 1

b3 can move to 4 , 5

b3 can move to 4 , 7

b4 can move to 4 , 3

b4 can move to 4 , 5

b5 can move to 0 , 3

b5 can move to 0 , 5

b6 can move to 5 , 2

b6 can jump to 4 , 5

b7 can jump to 4 , 3

b7 can jump to 4 , 7

b8 can jump to 4 , 5

There are 12 possible moves

Which piece do you want to move? b5

Which row do you want to move to? 0

Which column do you want to move to? 3

Which piece do you want to take? a6

Player A:

[[9, 1, 0], [0, 1, 0], [4, 1, 1], [2, 7, 0], [0, 7, 0], [3, 2,

0], [-1, -1, 0], [2, 5, 0], [1, 6, 0], [-1, -1, 0], [-1, -1,

0], [-1, -1, 0], [-1, -1, 0]]

Player B:

[[9, 1, 0], [-1, -1, 0], [7, 2, 0], [5, 6, 0], [5, 4, 0], [3,

0, 1], [6, 3, 0], [6, 5, 0], [6, 7, 0], [-1, -1, 0], [-1, -1,

0], [-1, -1, 0], [-1, -1, 0]]

 0 1 2 3 4 5 6 7

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 0 |XXXXX| a1 |XXXXX| |XXXXX| |XXXXX| a4 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 1 | |XXXXX| |XXXXX| |XXXXX| a8 |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 2 |XXXXX| |XXXXX| |XXXXX| a7 |XXXXX| a3 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 3 | B5 |XXXXX| a5 |XXXXX| |XXXXX| |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 4 |XXXXX| A2 |XXXXX| |XXXXX| |XXXXX| |

1

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

19

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 5 | |XXXXX| |XXXXX| b4 |XXXXX| b3 |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 6 |XXXXX| |XXXXX| b6 |XXXXX| b7 |XXXXX| b8 |

 |XXXXX| |XXXXX| |XXXXX| |XXXXX| |

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

 7 | |XXXXX| b2 |XXXXX| |XXXXX| |XXXXX|

 | |XXXXX| |XXXXX| |XXXXX| |XXXXX|

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

20

VB.Net

03 1 Dim NumberIn, NumberOut, Count, PartValue As Integer

Console.Write("Enter a positive whole number: ")

NumberIn = Console.ReadLine

NumberOut = 0

Count = 0

While NumberIn > 0

 Count += 1

 PartValue = NumberIn Mod 2

 NumberIn \= 2

 For i = 1 To Count - 1

 PartValue *= 10

 Next

 NumberOut += PartValue

End While

Console.WriteLine("The result is: " & NumberOut)

Console.ReadLine()

11

14 1 Sub DispayErrorCode(ByVal ErrorNumber As Integer)

 Console.WriteLine("Error Code " & ErrorNumber)

 If ErrorNumber = 1 Then

 Console.WriteLine("not a valid piece")

 ElseIf ErrorNumber = 2 Then

 Console.WriteLine("not a valid move")

 ElseIf ErrorNumber = 3 Then

 Console.WriteLine("not a number")

 ElseIf ErrorNumber = 4 Then

 Console.WriteLine("file error")

 End If

End Sub

3

15 1 Function ValidJump(ByVal Board(,) As String, ByVal

PlayersPieces(,) As Integer, ByVal Piece As String, ByVal

NewRow As Integer, ByVal NewColumn As Integer) As Boolean

 Dim Valid As Boolean

 Dim MiddlePiece, Player, OppositePiecePlayer,

MiddlePiecePlayer As String

 Dim Index, CurrentRow, CurrentColumn, MiddlePieceRow,

MiddlePieceColumn As Integer

 Valid = False

 MiddlePiece = ""

 Player = Left(Piece, 1).ToLower()

 If Len(Piece) = 2 Then

 Index = CInt(Right(Piece, 1))

 Else

 Index = CInt(Right(Piece, 2))

 End If

 If Player = "a" Then

 OppositePiecePlayer = "b"

 Else

 OppositePiecePlayer = "a"

 End If

 If NewRow >= 0 And NewRow < BoardSize And NewColumn

>= 0 And NewColumn < BoardSize Then

 If Board(NewRow, NewColumn) = Space Then

2

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

21

 CurrentRow = PlayersPieces(Index, Row)

 CurrentColumn = PlayersPieces(Index, Column)

 MiddlePieceRow = (CurrentRow + NewRow) \ 2

 MiddlePieceColumn = (CurrentColumn +

NewColumn) \ 2

 MiddlePiece = Board(MiddlePieceRow,

MiddlePieceColumn)

 MiddlePiecePlayer = Left(MiddlePiece,

1).ToLower()

 If MiddlePiecePlayer = OppositePiecePlayer

Then

 Valid = True

 End If

 End If

 End If

 Return Valid

End Function

Alternative logic statement:

MiddlePiecePlayer = OppositePiecePlayer and

MiddlePiecePlayer != ' ':

16 1 Function CountNumberOfPieces(ByVal PlayersPieces(,) As

Integer) As Integer

 Dim Count As Integer = 0

 For Index = 1 To NumberOfPieces

 If PlayersPieces(Index, Row) > -1 Then

 Count += 1

 End If

 Next

 Return Count

End Function

Sub PrintResult(ByVal A(,) As Integer, ByVal B(,) As

Integer, ByVal NextPlayer As String)

 Console.WriteLine("Game ended")

 Dim TotalA As Integer = CountNumberOfPieces(A)

 Dim TotalB As Integer = CountNumberOfPieces(B)

 TotalA = A(0, 0) - TotalA - 10 * A(0, 1)

 TotalB = B(0, 0) - TotalB - 10 * B(0, 1)

 If TotalA < TotalB Then

 Console.WriteLine("A won this game with a score

of " & TotalA)

 Console.WriteLine("B got a score of " & TotalB)

 ElseIf TotalB < TotalA Then

 Console.WriteLine("B won this game with a score

of " & TotalB)

 Console.WriteLine("A got a score of ", TotalA)

 Else

 Console.WriteLine("It was a draw. Both players

got a score of " & TotalA)

 End If

 PrintPlayerPieces(A, B)

End Sub

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

22

17 2 Sub MoveDame(ByRef OpponentsPieces(,) As Integer, ByRef

NewRow As Integer, ByRef NewColumn As Integer, ByVal

Player As String)

 Dim Opponent As String = ""

 Dim ChosenPiece As String

 Dim Index As Integer

 NewRow = -1

 While Player = Opponent Or NewRow = -1

 Console.Write("Which piece do you want to take?")

 ChosenPiece = Console.ReadLine

 Opponent = ChosenPiece.Substring(0, 1).ToLower

 Index = CInt(ChosenPiece.Substring(1,

ChosenPiece.Length - 1))

 NewRow = OpponentsPieces(Index, Row)

 NewColumn = OpponentsPieces(Index, Column)

 End While

 OpponentsPieces(Index, Row) = -1

 OpponentsPieces(Index, Column) = -1

 End Sub

 Sub MakeMove(ByRef Board(,) As String, ByRef

PlayersPieces(,) As Integer, ByRef OpponentsPieces(,) As

Integer, ByVal ListOfMoves() As MoveRecord, ByVal

PieceIndex As Integer)

 Dim Piece, MiddlePiece As String

 Dim NewRow, NewColumn, PlayersPieceIndex, CurrentRow,

CurrentColumn, MiddlePieceRow, MiddlePieceColumn As

Integer

 Dim Jumping As Boolean

 PlayersPieces(0, 0) = PlayersPieces(0, 0) + 1

 If PieceIndex > 0 Then

 Piece = ListOfMoves(PieceIndex).Piece

 NewRow = ListOfMoves(PieceIndex).NewRow

 NewColumn = ListOfMoves(PieceIndex).NewColumn

 If Len(Piece) = 2 Then

 PlayersPieceIndex = CInt(Right(Piece, 1))

 Else

 PlayersPieceIndex = CInt(Right(Piece, 2))

 End If

 CurrentRow = PlayersPieces(PlayersPieceIndex, Row)

 CurrentColumn = PlayersPieces(PlayersPieceIndex,

Column)

 Jumping = ListOfMoves(PieceIndex).CanJump

 MovePiece(Board, PlayersPieces, OpponentsPieces,

Piece, NewRow, NewColumn)

 If Jumping Then

 MiddlePieceRow = (CurrentRow + NewRow) \ 2

 MiddlePieceColumn = (CurrentColumn + NewColumn) \

2

 MiddlePiece = Board(MiddlePieceRow,

MiddlePieceColumn)

 Console.WriteLine("jumped over " & MiddlePiece)

 End If

 End If

 End Sub

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

23

 Sub MovePiece(ByRef Board(,) As String, ByRef

PlayersPieces(,) As Integer, ByRef OpponentsPieces(,) As

Integer, ByVal ChosenPiece As String, ByVal NewRow As

Integer, ByVal NewColumn As Integer)

 Dim Index, CurrentRow, CurrentColumn As Integer

 Dim Player As String

 If Len(ChosenPiece) = 2 Then

 Index = CInt(Right(ChosenPiece, 1))

 Else

 Index = CInt(Right(ChosenPiece, 2))

 End If

 CurrentRow = PlayersPieces(Index, Row)

 CurrentColumn = PlayersPieces(Index, Column)

 Board(CurrentRow, CurrentColumn) = Space

 If NewRow = BoardSize - 1 And PlayersPieces(Index,

Dame) = 0 Then

 Player = "a"

 PlayersPieces(0, 1) = PlayersPieces(0, 1) + 1

 PlayersPieces(Index, Dame) = 1

 ChosenPiece = ChosenPiece.ToUpper()

 MoveDame(OpponentsPieces, NewRow, NewColumn,

Player)

 Else

 If NewRow = 0 And PlayersPieces(Index, Dame) = 0

Then

 Player = "b"

 PlayersPieces(0, 1) = PlayersPieces(0, 1) + 1

 PlayersPieces(Index, Dame) = 1

 ChosenPiece = ChosenPiece.ToUpper()

 MoveDame(OpponentsPieces, NewRow, NewColumn,

Player)

 End If

 End If

 PlayersPieces(Index, Row) = NewRow

 PlayersPieces(Index, Column) = NewColumn

 Board(NewRow, NewColumn) = ChosenPiece

 End Sub

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

24

Python 3

03 1 NumberIn = int(input('Enter a positive whole number: '))

NumberOut = 0

Count = 0

while NumberIn > 0:

 Count += 1

 PartValue = NumberIn % 2

 NumberIn = NumberIn // 2

 for i in range(1, Count):

 PartValue = PartValue * 10

 NumberOut = NumberOut + PartValue

print('The result is: ', NumberOut)

11

14 1 def DisplayErrorCode(ErrorNumber):

 print('Error Code ', ErrorNumber, ' - ', end='')

 if ErrorNumber == 1:

 print('not a valid piece')

 elif ErrorNumber == 2:

 print('not a valid move')

 elif ErrorNumber == 3:

 print('not a number')

 elif ErrorNumber == 4:

 print('file error')

3

15 1 def ValidJump(Board, PlayersPieces, Piece, NewRow,

NewColumn):

 Valid = False

 MiddlePiece = ''

 Player = Piece[0].lower()

 Index = int(Piece[1:])

 if Player == 'a':

 OppositePiecePlayer = 'b'

 else:

 OppositePiecePlayer = 'a'

 if NewRow in range(BOARD_SIZE) and NewColumn in

range(BOARD_SIZE):

 if Board[NewRow][NewColumn] == SPACE:

 CurrentRow = PlayersPieces[Index][ROW]

 CurrentColumn = PlayersPieces[Index][COLUMN]

 MiddlePieceRow = (CurrentRow + NewRow) // 2

 MiddlePieceColumn = (CurrentColumn + NewColumn) // 2

 MiddlePiece =

Board[MiddlePieceRow][MiddlePieceColumn]

 MiddlePiecePlayer = MiddlePiece[0].lower()

 if MiddlePiecePlayer == OppositePiecePlayer:

 Valid = True

 return Valid

Alternative logic statement:

MiddlePiecePlayer == OppositePiecePlayer and

MiddlePiecePlayer != ' ':

2

16 1 def CountNumberOfPieces(PlayersPieces):

 Count = 0

 for Index in range(1, NUMBER_OF_PIECES + 1):

 if PlayersPieces[Index][ROW] > -1:

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

25

allow COLUMN instead of ROW

 Count += 1

 return Count

def PrintResult(A, B, NextPlayer):

 print('Game ended')

 TotalA = CountNumberOfPieces(A)

 TotalB = CountNumberOfPieces(B)

 TotalA = A[0][0] - TotalA - 10 * A[0][1]

 TotalB = B[0][0] - TotalB - 10 * B[0][1]

 if TotalA < TotalB:

 print('A won this game with a score of ', TotalA)

 print('B got a score of ', TotalB)

 elif TotalB < TotalA:

 print('B won this game with a score of ', TotalB)

 print('A got a score of ', TotalA)

 else:

 print('it was a draw. Both players got a score of ',

TotalA)

 PrintPlayerPieces(A, B)

17 2 def MoveDame(Player, OpponentsPieces):

 NewRow = -1

 Opponent = ''

 while Player == Opponent or NewRow == -1:

 ChosenPiece = input('Which piece do you want to take?

')

 Opponent = ChosenPiece[0].lower()

 Index = int(ChosenPiece[1:])

 NewRow = OpponentsPieces[Index][ROW]

 NewColumn = OpponentsPieces[Index][COLUMN]

 OpponentsPieces[Index][ROW] = -1

 OpponentsPieces[Index][COLUMN] = -1

 return NewRow, NewColumn, OpponentsPieces

def MovePiece(Board, PlayersPieces, OpponentsPieces,

ChosenPiece, NewRow, NewColumn):

 Index = int(ChosenPiece[1:])

 CurrentRow = PlayersPieces[Index][ROW]

 CurrentColumn = PlayersPieces[Index][COLUMN]

 Board[CurrentRow][CurrentColumn] = SPACE

 if NewRow == BOARD_SIZE - 1 and

PlayersPieces[Index][DAME] == 0:

 Player = 'a'

 PlayersPieces[0][1] += 1

 PlayersPieces[Index][DAME] = 1

 ChosenPiece = ChosenPiece.upper()

 NewRow, NewColumn, OpponentsPieces = MoveDame(Player,

OpponentsPieces)

 elif NewRow == 0 and PlayersPieces[Index][DAME] == 0:

 Player = 'b'

 PlayersPieces[0][1] += 1

 PlayersPieces[Index][DAME] = 1

 ChosenPiece = ChosenPiece.upper()

 NewRow, NewColumn, OpponentsPieces = MoveDame(Player,

OpponentsPieces)

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

26

 PlayersPieces[Index][ROW] = NewRow

 PlayersPieces[Index][COLUMN] = NewColumn

 Board[NewRow][NewColumn] = ChosenPiece

 return Board, PlayersPieces, OpponentsPieces

def MakeMove(Board, PlayersPieces, OpponentsPieces,

ListOfMoves, PieceIndex):

 PlayersPieces[0][0] += 1

 if PieceIndex > 0:

 Piece = ListOfMoves[PieceIndex].Piece

 NewRow = ListOfMoves[PieceIndex].NewRow

 NewColumn = ListOfMoves[PieceIndex].NewColumn

 PlayersPieceIndex = int(Piece[1:])

 CurrentRow = PlayersPieces[PlayersPieceIndex][ROW]

 CurrentColumn =

PlayersPieces[PlayersPieceIndex][COLUMN]

 Jumping = ListOfMoves[PieceIndex].CanJump

 Board, PlayersPieces, OpponentsPieces =

MovePiece(Board, PlayersPieces, OpponentsPieces, Piece,

NewRow, NewColumn)

 if Jumping:

 MiddlePieceRow = (CurrentRow + NewRow) // 2

 MiddlePieceColumn = (CurrentColumn + NewColumn) // 2

 MiddlePiece =

Board[MiddlePieceRow][MiddlePieceColumn]

 print('jumped over ', MiddlePiece)

 return Board, PlayersPieces, OpponentsPieces

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

27

Python 2

03 1 NumberIn = int(raw_input('Enter a positive whole number:

'))

NumberOut = 0

Count = 0

while NumberIn > 0:

 Count += 1

 PartValue = NumberIn % 2

 NumberIn = NumberIn // 2

 for i in range(1, Count):

 PartValue = PartValue * 10

 NumberOut = NumberOut + PartValue

print 'The result is: ', NumberOut

11

14 1 def DisplayErrorCode(ErrorNumber):

 print 'Error Code ', ErrorNumber

 if ErrorNumber == 1:

 print 'not a valid piece'

 elif ErrorNumber == 2:

 print 'not a valid move'

 elif ErrorNumber == 3:

 print 'not a number'

 elif ErrorNumber == 4:

 print 'file error'

3

15 1 def ValidJump(Board, PlayersPieces, Piece, NewRow,

NewColumn):

 Valid = False

 MiddlePiece = ''

 Player = Piece[0].lower()

 Index = int(Piece[1:])

 if Player == 'a':

 OppositePiecePlayer = 'b'

 else:

 OppositePiecePlayer = 'a'

 if NewRow in range(BOARD_SIZE) and NewColumn in

range(BOARD_SIZE):

 if Board[NewRow][NewColumn] == SPACE:

 CurrentRow = PlayersPieces[Index][ROW]

 CurrentColumn = PlayersPieces[Index][COLUMN]

 MiddlePieceRow = (CurrentRow + NewRow) // 2

 MiddlePieceColumn = (CurrentColumn + NewColumn) // 2

 MiddlePiece =

Board[MiddlePieceRow][MiddlePieceColumn]

 MiddlePiecePlayer = MiddlePiece[0].lower()

 if MiddlePiecePlayer == OppositePiecePlayer and

MiddlePiecePlayer != ' ':

 Valid = True

 return Valid

2

16 1 def CountNumberOfPieces(PlayersPieces):

 Count = 0

 for Index in range(1, NUMBER_OF_PIECES + 1):

 if PlayersPieces[Index][ROW] > -1:

allow COLUMN instead of ROW

 Count += 1

 return Count

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

28

def PrintResult(A, B, NextPlayer):

 print 'Game ended'

 TotalA = CountNumberOfPieces(A)

 TotalB = CountNumberOfPieces(B)

 TotalA = A[0][0] - TotalA - 10 * A[0][1]

 TotalB = B[0][0] - TotalB - 10 * B[0][1]

 if TotalA < TotalB:

 print 'A won this game with a score of ', TotalA

 print 'B got a score of ', TotalB

 elif TotalB < TotalA:

 print 'B won this game with a score of ', TotalB

 print 'A got a score of ', TotalB

 else:

 print 'it was a draw. Both players got a score of ',

TotalA

 PrintPlayerPieces(A, B)

17 2 def MoveDame(Player, OpponentsPieces):

 NewRow = -1

 Opponent = ''

 while Player == Opponent or NewRow == -1:

 ChosenPiece = raw_input('Which piece do you want to

take? ')

 Opponent = ChosenPiece[0].lower()

 Index = int(ChosenPiece[1:])

 NewRow = OpponentsPieces[Index][ROW]

 NewColumn = OpponentsPieces[Index][COLUMN]

 OpponentsPieces[Index][ROW] = -1

 OpponentsPieces[Index][COLUMN] = -1

 return NewRow, NewColumn, OpponentsPieces

def MovePiece(Board, PlayersPieces, OpponentsPieces,

ChosenPiece, NewRow, NewColumn):

 Index = int(ChosenPiece[1:])

 CurrentRow = PlayersPieces[Index][ROW]

 CurrentColumn = PlayersPieces[Index][COLUMN]

 Board[CurrentRow][CurrentColumn] = SPACE

 if NewRow == BOARD_SIZE - 1 and

PlayersPieces[Index][DAME] == 0:

 Player = 'a'

 PlayersPieces[0][1] += 1

 PlayersPieces[Index][DAME] = 1

 ChosenPiece = ChosenPiece.upper()

 NewRow, NewColumn, OpponentsPieces = MoveDame(Player,

OpponentsPieces)

 elif NewRow == 0 and PlayersPieces[Index][DAME] == 0:

 Player = 'b'

 PlayersPieces[0][1] += 1

 PlayersPieces[Index][DAME] = 1

 ChosenPiece = ChosenPiece.upper()

 NewRow, NewColumn, OpponentsPieces = MoveDame(Player,

OpponentsPieces)

 PlayersPieces[Index][ROW] = NewRow

 PlayersPieces[Index][COLUMN] = NewColumn

 Board[NewRow][NewColumn] = ChosenPiece

 return Board, PlayersPieces, OpponentsPieces

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

29

def MakeMove(Board, PlayersPieces, OpponentsPieces,

ListOfMoves, PieceIndex):

 PlayersPieces[0][0] += 1

 if PieceIndex > 0:

 Piece = ListOfMoves[PieceIndex].Piece

 NewRow = ListOfMoves[PieceIndex].NewRow

 NewColumn = ListOfMoves[PieceIndex].NewColumn

 PlayersPieceIndex = int(Piece[1:])

 CurrentRow = PlayersPieces[PlayersPieceIndex][ROW]

 CurrentColumn =

PlayersPieces[PlayersPieceIndex][COLUMN]

 Jumping = ListOfMoves[PieceIndex].CanJump

 Board, PlayersPieces, OpponentsPieces =

MovePiece(Board, PlayersPieces, OpponentsPieces, Piece,

NewRow, NewColumn)

 if Jumping:

 MiddlePieceRow = (CurrentRow + NewRow) // 2

 MiddlePieceColumn = (CurrentColumn + NewColumn) // 2

 MiddlePiece =

Board[MiddlePieceRow][MiddlePieceColumn]

 print 'jumped over ', MiddlePiece

 return Board, PlayersPieces, OpponentsPieces

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

30

Pascal

03 1 var

 NumberIn, NumberOut, Count, PartValue, i: integer;

begin

 write('Enter a positive whole number: ');

 readln(NumberIn);

 NumberOut := 0;

 Count := 0;

 while NumberIn > 0 do

 begin

 Count := Count + 1;

 PartValue := NumberIn mod 2;

 NumberIn := NumberIn div 2;

 for i := 1 to Count - 1 do

 PartValue := PartValue * 10;

 NumberOut := NumberOut + PartValue;

 end;

 writeln('The result is: ', NumberOut);

end;

11

14 1 procedure DisplayErrorCode(ErrorNumber: integer);

begin

 write('Error Code ', ErrorNumber, ' - ');

 case ErrorNumber of

 1 : writeln('not a valid piece');

 2 : writeln('not a valid move');

 3 : writeln('not a number');

 4 : writeln('file error');

 end;

end;

3

15 1 function ValidJump(Board: TBoard; PlayersPieces: TPieces;

Piece: string; NewRow, NewColumn: integer): boolean;

var

 Valid: boolean;

 MiddlePiece: string;

 Player, OppositePiecePlayer, MiddlePiecePlayer: string;

 Index, CurrentRow, CurrentColumn, MiddlePieceRow,

MiddlePieceColumn: integer;

begin

 Valid := false;

 MiddlePiece := '';

 Player := LowerCase(LeftStr(Piece, 1));

 if Length(Piece) = 2 then

 Index := StrtoInt(RightStr(Piece, 1))

 else

 Index := StrtoInt(RightStr(Piece, 2));

 if Player = 'a' then

 OppositePiecePlayer := 'b'

 else

 OppositePiecePlayer := 'a';

 if (NewRow >= 0) and (NewRow < BoardSize)

 and (NewColumn >= 0) and (NewColumn < BoardSize) then

 if Board[NewRow, NewColumn] = Space then

 begin

 CurrentRow := PlayersPieces[Index, Row];

 CurrentColumn := PlayersPieces[Index, Column];

2

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

31

 MiddlePieceRow := (CurrentRow + NewRow) div 2;

 MiddlePieceColumn := (CurrentColumn + NewColumn)

div 2;

 MiddlePiece := Board[MiddlePieceRow,

MiddlePieceColumn];

 MiddlePiecePlayer :=

LowerCase(LeftStr(MiddlePiece, 1));

 if (MiddlePiecePlayer = OppositePiecePlayer) then

 Valid := true;

 end;

 ValidJump := Valid;

end;

Alternative logic statement:

(MiddlePiecePlayer = OppositePiecePlayer) and

(MiddlePiecePlayer <> ' ')

16 1 function CountNumberOfPieces(PlayersPieces: TPieces):

integer;

var Count, Index: integer;

begin

 Count := 0;

 for Index := 1 to NumberOfPieces do

 if PlayersPieces[Index, ROW] > -1 then

// allow Column instead of Row

 Count := Count + 1;

 CountNumberOfPieces := Count;

end;

procedure PrintResult(A, B: TPieces; NextPlayer: string);

var TotalA, TotalB: integer;

begin

 writeln('Game ended');

 TotalA := CountNumberOfPieces(A);

 TotalB := CountNumberOfPieces(B);

 TotalA := A[0, 0] - TotalA - 10 * A[0, 1];

 TotalB := B[0, 0] - TotalB - 10 * B[0, 1] ;

 if TotalA < TotalB then

 begin

 writeln('A won this game with a score of ', TotalA);

 writeln('B got a score of ', TotalB);

 end

 else

 if TotalB < TotalA then

 begin

 writeln('B won this game with a score of ',

TotalB);

 writeln('A got a score of ', TotalA);

 end

 else

 writeLn('it was a draw. Both players got a score of

', TotalA);

 PrintPlayerPieces(A, B);

end;

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

32

17 2 procedure MoveDame(Player: string; var OpponentsPieces:

TPieces; var NewRow, NewColumn: integer);

var

 Opponent, ChosenPiece: string;

 Index: integer;

begin

 NewRow := -1;

 Opponent := '';

 while (Player = Opponent) or (NewRow = -1) do

 begin

 write('Which piece do you want to take? ');

 readln(ChosenPiece);

 Opponent := LowerCase(LeftStr(ChosenPiece,1));

 if Length(ChosenPiece) = 2 then

 Index := StrtoInt(RightStr(ChosenPiece,1))

 else

 Index := StrtoInt(RightStr(ChosenPiece,2));

 NewRow := OpponentsPieces[Index, Row];

 NewColumn := OpponentsPieces[Index][Column];

 end;

 OpponentsPieces[Index, Row] := -1;

 OpponentsPieces[Index, Column] := -1;

end;

procedure MakeMove(var Board: TBoard; var PlayersPieces,

 OpponentsPieces: TPieces; ListOfMoves: TList;

PieceIndex: integer);

var

 Piece, MiddlePiece: string;

 NewRow, NewColumn, PlayersPieceIndex, CurrentRow,

CurrentColumn: integer;

 MiddlePieceRow, MiddlePieceColumn: integer;

 Jumping: boolean;

begin

 PlayersPieces[0, 0] := PlayersPieces[0, 0] + 1;

 if PieceIndex > 0 then

 begin

 Piece := ListOfMoves[PieceIndex].Piece;

 NewRow := ListOfMoves[PieceIndex].NewRow;

 NewColumn := ListOfMoves[PieceIndex].NewColumn;

 if Length(Piece) = 2 then

 PlayersPieceIndex := StrtoInt(RightStr(Piece, 1))

 else

 PlayersPieceIndex := StrtoInt(RightStr(Piece, 2));

 CurrentRow := PlayersPieces[PlayersPieceIndex, Row];

 CurrentColumn := PlayersPieces[PlayersPieceIndex,

Column];

 Jumping := ListOfMoves[PieceIndex].CanJump;

 MovePiece(Board, PlayersPieces, OpponentsPieces,

Piece, NewRow, NewColumn);

 if Jumping then

 begin

 MiddlePieceRow := (CurrentRow + NewRow) div 2;

 MiddlePieceColumn := (CurrentColumn + NewColumn)

div 2;

 MiddlePiece := Board[MiddlePieceRow,

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

33

MiddlePieceColumn];

 end;

 end;

end;

procedure MovePiece(var Board: TBoard; var PlayersPieces,

OpponentsPieces: TPieces;

 ChosenPiece: string; NewRow, NewColumn: integer);

var

 Index, CurrentRow, CurrentColumn: integer;

 Player: string;

begin

 if Length(ChosenPiece) = 2 then

 Index := StrtoInt(RightStr(ChosenPiece,1))

 else

 Index := StrtoInt(RightStr(ChosenPiece,2));

 CurrentRow := PlayersPieces[Index, Row];

 CurrentColumn := PlayersPieces[Index, Column];

 Board[CurrentRow, CurrentColumn] := Space;

 if (NewRow = BoardSize-1) and (PlayersPieces[Index,

Dame] = 0) then

 begin

 Player := 'a';

 PlayersPieces[0,1] := PlayersPieces[0,1] + 1;

 PlayersPieces[Index, Dame] := 1;

 ChosenPiece := UpperCase(ChosenPiece);

 MoveDame(Player, OpponentsPieces, NewRow,

NewColumn);

 end

 else

 if (NewRow = 0) and (PlayersPieces[Index, Dame] = 0)

then

 begin

 Player := 'b';

 PlayersPieces[0, 1] := PlayersPieces[0, 1] + 1;

 PlayersPieces[Index, Dame] := 1;

 ChosenPiece := UpperCase(ChosenPiece);

 MoveDame(Player, OpponentsPieces, NewRow,

NewColumn);

 end;

 PlayersPieces[Index, Row] := NewRow;

 PlayersPieces[Index, Column] := NewColumn;

 Board[NewRow, NewColumn] := ChosenPiece;

end;

procedure MakeMove(var Board: TBoard; var PlayersPieces,

 OpponentsPieces: TPieces; ListOfMoves: TList;

PieceIndex: integer);

var

 Piece, MiddlePiece: string;

 NewRow, NewColumn, PlayersPieceIndex, CurrentRow,

CurrentColumn: integer;

 MiddlePieceRow, MiddlePieceColumn: integer;

 Jumping: boolean;

begin

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

34

 PlayersPieces[0, 0] := PlayersPieces[0, 0] + 1;

 if PieceIndex > 0 then

 begin

 Piece := ListOfMoves[PieceIndex].Piece;

 NewRow := ListOfMoves[PieceIndex].NewRow;

 NewColumn := ListOfMoves[PieceIndex].NewColumn;

 if Length(Piece) = 2 then

 PlayersPieceIndex := StrtoInt(RightStr(Piece, 1))

 else

 PlayersPieceIndex := StrtoInt(RightStr(Piece, 2));

 CurrentRow := PlayersPieces[PlayersPieceIndex, Row];

 CurrentColumn := PlayersPieces[PlayersPieceIndex,

Column];

 Jumping := ListOfMoves[PieceIndex].CanJump;

 MovePiece(Board, PlayersPieces, OpponentsPieces,

Piece, NewRow, NewColumn);

 if Jumping then

 begin

 MiddlePieceRow := (CurrentRow + NewRow) div 2;

 MiddlePieceColumn := (CurrentColumn + NewColumn)

div 2;

 MiddlePiece := Board[MiddlePieceRow,

MiddlePieceColumn];

 end;

 end;

end;

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

35

C#

03 1 int count = 0, partValue, numberIn, numberOut = 0;

Console.Write("Enter a positive whole number: ");

numberIn = Convert.ToInt32(Console.ReadLine());

while (numberIn > 0)

{

 count++;

 partValue = numberIn % 2;

 numberIn = numberIn / 2;

 for (int i = 1; i < count; i++)

 {

 partValue = partValue * 10;

 }

 numberOut = numberOut + partValue;

}

Console.WriteLine("The result is: " + numberOut);

Console.ReadLine();

11

14 1 private static void DisplayErrorCode(int errorNumber)

{

 Console.WriteLine("Error Code " + errorNumber);

 if (errorNumber == 1)

 {

 Console.WriteLine("not a valid piece");

 }

 else if (errorNumber == 2)

 {

 Console.WriteLine("not a valid move");

 }

 else if (errorNumber == 3)

 {

 Console.WriteLine("not a number");

 }

 else if (errorNumber == 4)

 {

 Console.WriteLine("file error");

 }

}

3

15 1 private static bool ValidJump(string[,] board, int[,]

playersPieces, string piece, int newRow, int newColumn)

{

 string middlePiece = "";

 string player, oppositePiecePlayer, middlePiecePlayer;

 int index, currentRow, currentColumn, middlePieceRow,

middlePieceColumn;

 player = piece[0].ToString().ToLower();

 if (piece.Length == 2)

 {

 index = Convert.ToInt32(piece[1].ToString());

 }

 else

 {

 index = Convert.ToInt32(piece.Substring(1));

 }

 if (player == "a")

2

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

36

 {

 oppositePiecePlayer = "b";

 }

 else

 {

 oppositePiecePlayer = "a";

 }

 if (newRow >= 0 && newRow < BoardSize &&

 newColumn >= 0 && newColumn < BoardSize)

 {

 if (board[newRow, newColumn] == Space)

 {

 currentRow = playersPieces[index, Row];

 currentColumn = playersPieces[index, Column];

 middlePieceRow = (currentRow + newRow) / 2;

 middlePieceColumn = (currentColumn +

newColumn) / 2;

 middlePiece = board[middlePieceRow,

middlePieceColumn];

 middlePiecePlayer =

middlePiece[0].ToString().ToLower();

 if (middlePiecePlayer == oppositePiecePlayer)

 {

 return true;

 }

 }

 }

 return false;

}

Alternative logic statement:

(middlePiecePlayer == oppositePiecePlayer) &&

middlePiecePlayer != " "

16 1 private static int CountNumberOfPieces(int[,]

playersPieces)

{

 int count = 0;

 for (int index = 1; index < NumberOfPieces + 1;

index++)

 {

 if (playersPieces[index,Row] > -1) // allow Column

instead of Row

 {

 count++;

 }

 }

 return count;

}

private static void PrintResult(int[,] a, int[,] b, string

nextPlayer)

{

 int totalA, totalB;

 Console.WriteLine("Game ended");

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

37

 totalA = CountNumberOfPieces(a);

 totalB = CountNumberOfPieces(b);

 totalA = a[0, 0] - totalA - 10 * a[0, 1];

 totalB = b[0, 0] - totalB - 10 * b[0, 1];

 if (totalA < totalB)

 {

 Console.WriteLine("A won this game with a score of

" + totalA);

 Console.WriteLine("B got a score of " + totalB);

 }

 else if (totalB < totalA)

 {

 Console.WriteLine("B won this game with a score of

" + totalB);

 Console.WriteLine("A got a score of " + totalA);

 }

 else

 {

 Console.WriteLine("it was a draw. Both players got

a score of " + totalA);

 }

 PrintPlayerPieces(a, b);

}

17 2 private static void MoveDame(string[,] board, string

player, ref int newRow,

 ref int newColumn, int[,] opponentsPieces)

{

 string opponent, chosenPiece;

 int index = 0;

 newRow = -1;

 opponent = "";

 while ((player == opponent) || (newRow == -1))

 {

 Console.Write("Which piece do you want to take?

");

 chosenPiece = Console.ReadLine();

 opponent = chosenPiece[0].ToString().ToLower();

 index = Convert.ToInt32(chosenPiece.Substring(1));

 newRow = opponentsPieces[index, Row];

 newColumn = opponentsPieces[index, Column];

 }

 opponentsPieces[index, Row] = -1;

 opponentsPieces[index, Column] = -1;

}

private static void MovePiece(string[,] board, int[,]

playersPieces,

 string chosenPiece, int newRow, int newColumn, int[,]

opponentsPieces)

{

 int index, currentRow, currentColumn;

 string player;

 if (chosenPiece.Length == 2)

 {

 index =

Convert.ToInt32(chosenPiece[1].ToString());

 }

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

38

 else

 {

 index = Convert.ToInt32(chosenPiece.Substring(1));

 }

 currentRow = playersPieces[index, Row];

 currentColumn = playersPieces[index, Column];

 board[currentRow, currentColumn] = Space;

 if (newRow == BoardSize - 1 && playersPieces[index,

Dame] == 0)

 {

 player = "a";

 playersPieces[0, 1] = playersPieces[0, 1] + 1;

 playersPieces[index, Dame] = 1;

 chosenPiece = chosenPiece.ToUpper();

 MoveDame(board, player, ref newRow, ref newColumn,

opponentsPieces);

 }

 else if (newRow == 0 && playersPieces[index, Dame] ==

0)

 {

 player = "b";

 playersPieces[0, 1] = playersPieces[0, 1] + 1;

 playersPieces[index, Dame] = 1;

 chosenPiece = chosenPiece.ToUpper();

 MoveDame(board, player, ref newRow, ref newColumn,

opponentsPieces);

 }

 playersPieces[index, Row] = newRow;

 playersPieces[index, Column] = newColumn;

 board[newRow, newColumn] = chosenPiece;

}

 private static void MakeMove(string[,] board, int[,]

playersPieces, int[,] opponentsPieces, MoveRecord[]

listOfMoves, int pieceIndex)

 {

 string piece, middlePiece;

 int newRow, newColumn, playersPieceIndex,

currentRow, currentColumn;

 int middlePieceRow, middlePieceColumn;

 bool jumping;

 playersPieces[0, 0] = playersPieces[0, 0] + 1;

 if (pieceIndex > 0)

 {

 piece = listOfMoves[pieceIndex].Piece;

 newRow = listOfMoves[pieceIndex].NewRow;

 newColumn = listOfMoves[pieceIndex].NewColumn;

 playersPieceIndex =

Convert.ToInt32(piece.Substring(1));

 currentRow = playersPieces[playersPieceIndex,

Row];

 currentColumn = playersPieces[playersPieceIndex,

Column];

 jumping = listOfMoves[pieceIndex].CanJump;

 MovePiece(board, playersPieces, piece, newRow,

newColumn, opponentsPieces);

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

39

 if (jumping)

 {

 middlePieceRow = (currentRow + newRow) / 2;

 middlePieceColumn = (currentColumn + newColumn)

/ 2;

 middlePiece = board[middlePieceRow,

middlePieceColumn];

 Console.WriteLine("jumped over " + middlePiece);

 }

 }

 }

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

40

Java

03 1 Console.writeLine("Enter a positive whole number: ");

int numberIn = Integer.parseInt(Console.readLine());

int numberOut = 0;

int count = 0;

int partValue;

while (numberIn > 0) {

 count++;

 partValue = numberIn % 2;

 numberIn = numberIn / 2;

 for (int i = 1; i < count; i++) {

 partValue = partValue * 10;

 }

 numberOut = numberOut + partValue;

}

Console.writeLine("The result is: " + numberOut);

11

14 1 void displayErrorCode(int errorNumber) {

 Console.write("Error Code " + errorNumber + " - ");

 if (errorNumber == 1) {

 Console.writeLine("not a valid piece");

 } else if (errorNumber == 2) {

 Console.writeLine("not a valid move");

 } else if (errorNumber == 3) {

 Console.writeLine("not a number");

 } else if (errorNumber == 4) {

 Console.writeLine("file error");

 }

}

Alternative Example

void displayErrorCode(int errorNumber) {

 Console.write("Error " + errorNumber + " - ");

 switch (errorNumber) {

 case 1:

 Console.writeLine("not a valid piece.");

 break;

 case 2:

 Console.writeLine("not a valid move");

 break;

 case 3:

 Console.writeLine("not a number");

 break;

 case 4:

 Console.writeLine("file error");

 break;

 }

}

3

15 1 boolean validJump(String[][] board, int[][] playersPieces,

String piece, int newRow, int newColumn) {

 boolean valid = false;

 String oppositePiecePlayer, middlePiecePlayer, player,

middlePiece;

 int index, currentRow, currentColumn, middlePieceRow,

2

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

41

middlePieceColumn;

 player = (piece.charAt(0) + "").toLowerCase();

 index = Integer.parseInt(piece.substring(1));

 if (player.equals("a")) {

 oppositePiecePlayer = "b";

 } else {

 oppositePiecePlayer = "a";

 }

 if (newRow >= 0 && newRow < BOARD_SIZE

 && newColumn >= 0 && newColumn < BOARD_SIZE) {

 if (board[newRow][newColumn].equals(SPACE)) {

 currentRow = playersPieces[index][ROW];

 currentColumn = playersPieces[index][COLUMN];

 middlePieceRow = (currentRow + newRow) / 2;

 middlePieceColumn = (currentColumn +

newColumn) / 2;

 middlePiece =

board[middlePieceRow][middlePieceColumn];

 middlePiecePlayer = (middlePiece.charAt(0) +

"").toLowerCase();

 if

(middlePiecePlayer.equals(oppositePiecePlayer)) {

 valid = true;

 }

 }

 }

 return valid;

}

16 1 int countNumberOfPieces(int[][] playerPieces) {

 int count = 0;

 for (int index = 1; index < NUMBER_OF_PIECES + 1;

index++) {

 if (playerPieces[index][ROW] > -1) {

 count++;

 }

 }

 return count;

}

void printResult(int[][] a, int[][] b, String nextPlayer)

{

 Console.writeLine("Game ended");

 int totalA = countNumberOfPieces(a);

 int totalB = countNumberOfPieces(b);

 totalA = a[0][0] - totalA - 10 * a[0][1];

 totalB = b[0][0] - totalB - 10 * b[0][1];

 if (totalA < totalB) {

 Console.writeLine("A won with a score of " +

totalA);

 Console.writeLine("B got a score of " + totalB);

 } else if (totalB < totalA) {

 Console.writeLine("B won with a score of " +

totalB);

 Console.writeLine("A got a score of " + totalA);

 } else {

 Console.writeLine("it was a draw. Both players got

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

42

a score of " + totalA);

 }

 printPlayerPieces(a, b);

}

17 2 int[] moveDame(String player, int [][] opponentsPieces) {

 int newRow = -1;

 int newColumn = 0;

 String opponent = "";

 int index = 0;

 while (player.equals(opponent) || newRow == -1) {

 Console.writeLine("Which piece do you want to

take?");

 String chosenPiece = Console.readLine();

 opponent = chosenPiece.substring(0,

1).toLowerCase();

 index =

Integer.parseInt(chosenPiece.substring(1));

 newRow = opponentsPieces[index][ROW];

 newColumn = opponentsPieces[index][COLUMN];

 }

 opponentsPieces[index][ROW] = -1;

 opponentsPieces[index][COLUMN] = -1;

 return new int[]{newRow, newColumn};

}

void movePiece(String[][] board, int[][] playersPieces,

int[][] opponentsPieces, String chosenPiece, int newRow,

int newColumn) {

 int index =

Integer.parseInt(chosenPiece.substring(1));

 int currentRow = playersPieces[index][ROW];

 int currentColumn = playersPieces[index][COLUMN];

 board[currentRow][currentColumn] = SPACE;

 String player;

 if (newRow == BOARD_SIZE - 1 &&

playersPieces[index][DAME] == 0) {

 player = "a";

 playersPieces[0][1] += 1;

 playersPieces[index][DAME] = 1;

 chosenPiece = chosenPiece.toUpperCase();

 int[] rtnInts = moveDame(player, opponentsPieces);

 newRow = rtnInts[0];

 newColumn = rtnInts[1];

 } else if (newRow == 0 && playersPieces[index][DAME]

== 0) {

 player = "b";

 playersPieces[0][1] += 1;

 playersPieces[index][DAME] = 1;

 chosenPiece = chosenPiece.toUpperCase();

 int[] rtnInts = moveDame(player, opponentsPieces);

 newRow = rtnInts[0];

 newColumn = rtnInts[1];

 }

 playersPieces[index][ROW] = newRow;

 playersPieces[index][COLUMN] = newColumn;

9

ComputerScience4U.com

MARK SCHEME – AS COMPUTER SCIENCE – 7516/1 – JUNE 2019

43

 board[newRow][newColumn] = chosenPiece;

}

void makeMove(String[][] board, int[][] playersPieces,

 int[][] opponentsPieces, MoveRecord[] listOfMoves,

int pieceIndex) {

 playersPieces[0][0] += 1;

 if (pieceIndex > 0) {

 String piece = listOfMoves[pieceIndex].piece;

 int newRow = listOfMoves[pieceIndex].newRow;

 int newColumn = listOfMoves[pieceIndex].newColumn;

 int playersPieceIndex =

Integer.parseInt(piece.substring(1));

 int currentRow =

playersPieces[playersPieceIndex][ROW];

 int currentColumn =

playersPieces[playersPieceIndex][COLUMN];

 boolean jumping = listOfMoves[pieceIndex].canJump;

 movePiece(board, playersPieces, opponentsPieces,

piece, newRow, newColumn);

 if (jumping) {

 int middlePieceRow = (currentRow + newRow) /

2;

 int middlePieceColumn = (currentColumn +

newColumn) / 2;

 String middlePiece =

board[middlePieceRow][middlePieceColumn];

 Console.writeLine("jumped over " +

middlePiece);

 }

 }

}

ComputerScience4U.com

